2,290 research outputs found
A pedestrian approach to the high energy limits of branes and other gravitational systems
In this article we study limits of models that contain a dimensionful
parameter such as the mass of the relativistic point-particle. The limits are
analogous to the massless limit of the particle and may be thought of as high
energy limits. We present the ideas and work through several examples in a
(hopefully) pedagogical manner. Along the way we derive several new results.Comment: 19 pages, 1 figur
Q2237+0305 source structure and dimensions from light curves simulation
Assuming a two-component quasar structure model consisting of a central
compact source and an extended outer feature, we produce microlensing
simulations for a population of star-like objects in the lens galaxy. Such a
model is a simplified version of that adopted to explain the brightness
variations observed in Q0957 (Schild & Vakulik 2003). The microlensing light
curves generated for a range of source parameters were compared to the light
curves obtained in the framework of the OGLE program. With a large number of
trials we built, in the domain of the source structure parameters, probability
distributions to find "good" realizations of light curves. The values of the
source parameters which provide the maximum of the joint probability
distribution calculated for all the image components, have been accepted as
estimates for the source structure parameters. The results favour the
two-component model of the quasar brightness structure over a single compact
central source model, and in general the simulations confirm the Schild-Vakulik
model that previously described successfully the microlensing and other
properties of Q0957. Adopting 3300 km/s for the transverse velocity of the
source, the effective size of the central source was determined to be about
2x10^15 cm, and Epsilon =2 was obtained for the ratio of the integral
luminosity of the outer feature to that of the central source.Comment: 7 pages, 4 figures, LaTe
Corrosion processes at the GGG40 steelâbentonite interface
Spheroidal graphite cast iron (GGG40/0.7040) is used as an overpack material for the reference Pollux 10 container, a prototype for the storage of fuel elements in different types of host rocks (Hassel et al., 2019). Corrosion processes are expected to be triggered after some decades, as the contacting bentonite, which is used as fill material, becomes soggy because of the decay of the fission heat generation and the intrusion of pore water as the temperature decreases under the condensation point (King and Padovani, 2011). The distinct electrochemical reactivities of the graphite, ferrite, pearlite, and cementite phases exposed by this material introduce local galvanic elements which influence the topographic evolution of degradation (Spence, 2005). The aim of this work is to elucidate the corrosion dynamics of active and passive areas by following the chemical evolution at the interface of cast ironâbentonite during the first stages after its saturation with geological pore water. Polarization experiments and electrochemical impedance spectroscopy were applied to monitor the corrosion process in a bentonite cell, where GGG40 steel is put into contact with a light compacted Wyoming bentonite slurry 1â:â10
of bentonite to Opalinus Clay pore water (Fig. 1a). Experiments were performed at 30 and 50ââC for longer than 3 months. The surface chemistry and morphological changes were investigated by local XPS, SEM-EDX, and TEM (X-ray photoelectron spectroscopy, scanning electron microscopy with energy dispersive X-ray, and transmission electron microscopy, respectively). These experiments were complemented with corrosion studies performed in pore water under different temperatures, hydrostatic pressures, and pH and with and without dissolved oxygen.
The polarization curves indicate a constant corrosion rate of GGG40 steel in saturated bentonite after 30âd. SEM micrographs reveal a preferential dissolution of the ferrite phase around the graphite spheres and the ferrite lamellae contained in the pearlitic eutectic. A strong localized dissolution of ferrite along the graphite boundary can be also observed; this is a typical case of crevice corrosion caused by the unhindered access of oxygen to the graphitic cathodic areas (Wang et al., 2022). The surface chemical studies indicate the accumulation of iron oxides, which can be attributed to a hydrated magnetite and the formation of iron silicates (Zhang et al., 2021). TEM pictures of a cross-sectional lamella, including part of graphite sphere, show the formation of a silicate film covering the corroding surface with an irregular adherence (Fig. 1b).
The initial relatively high corrosion rate of GGG40 steel can be attributed to the dissolution of the more active ferrite with the formation of poorly passivating iron oxides and silicates. The system is driven towards the dissolution of pearlite at more positive electrode potentials. The bentonite slurry limits the access of oxygen to the graphitic cathodic areas, reducing the corrosion rate by 1 order of magnitude in comparison with that in aerated pore water. A surface enrichment of cementite with superior passive properties and the neutralization of the local elements by approaching the corrosion potential of graphite (Kadowaki et al., 2019) is also expected. Thus, the consumption of oxygen and the transport limitation of the cathodic reaction by bentonite forecast a considerable reduction in the degradation of the container after a sacrificial corrosion phase
Turbulence and turbulent mixing in natural fluids
Turbulence and turbulent mixing in natural fluids begins with big bang
turbulence powered by spinning combustible combinations of Planck particles and
Planck antiparticles. Particle prograde accretions on a spinning pair releases
42% of the particle rest mass energy to produce more fuel for turbulent
combustion. Negative viscous stresses and negative turbulence stresses work
against gravity, extracting mass-energy and space-time from the vacuum.
Turbulence mixes cooling temperatures until strong-force viscous stresses
freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic
microwave background temperature anisotropies show big bang turbulence fossils
along with fossils of weak plasma turbulence triggered as plasma photon-viscous
forces permit gravitational fragmentation on supercluster to galaxy mass
scales. Turbulent morphologies and viscous-turbulent lengths appear as linear
gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies
fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the
dark matter of galaxies. Shortly after the plasma to gas transition,
planet-mergers produce stars that explode on overfeeding to fertilize and
distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International
Center for Theoretical Physics conference, Trieste, Italy. Revision according
to Referee comments. Accepted for Physica Scripta Topical Issue to be
published in 201
Removing black-hole singularities with nonlinear electrodynamics
We propose a way to remove black hole singularities by using a particular
nonlinear electrodynamics Lagrangian that has been recently used in various
astrophysics and cosmological frameworks. In particular, we adapt the
cosmological analysis discussed in a previous work to the black hole physics.
Such analysis will be improved by applying the Oppenheimer-Volkoff equation to
the black hole case. At the end, fixed the radius of the star, the final
density depends only on the introduced quintessential density term
and on the mass.Comment: In this last updated version we correct two typos which were present
in Eqs. (21) and (22) in the version of this letter which has been published
in Mod. Phys. Lett. A 25, 2423-2429 (2010). In the present version, both of
Eqs. (21) and (22) are dimensionally and analytically correc
Hamiltonian Formulation of Two Body Problem in Wheeler-Feynman electrodynamics
A Hamiltonian formulation for the classical problem of electromagnetic
interaction of two charged relativistic particles is found.Comment: 22 pages, 8 Uuencoded Postscript figure
- âŠ