292 research outputs found

    Nonlinear optics in relativistic plasmas

    Full text link
    We discuss various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87450/2/103_1.pd

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte

    Hydrophobic composition based on mixed-molecular weight polyethylene

    Get PDF
    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works

    Photonuclear physics - Laser light splits atom

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62874/1/404239a0.pd

    The use of big data in interdisciplinary research on example of the Greater Mediterranean macroregion

    Get PDF
    Big data collection and analysis technologies are being intensively introduced into the social, economic and political spheres in countries and macroregions, including the Mediterranean region. This fact actualises the prospects of interdisciplinary research at the intersection of sociology, political science and regional studies. The article examines the benefits and risks of using these technologies in listed areas, taking Spain and the Middle East as examples. Among the main problems and threats, the authors consider the following: personal data confidentiality breach, and increased data manipulation for political purposes, the emergence of illegitimate forms of citizens self-organisation, the transition of Internet users to anonymous accounts due to the practice of “privatization” of personal data by non-state and terrorist groups in regional spaces, preventing the qualitative collection of data. The need to solve these problems at the international level was noted. The range of possibilities offered by working with big data to provide pragmatic and effective socio-political forecasting and operational regional studies is shown

    Water-repellent coatings for surface and 3D wood processing

    Get PDF
    The paper presents the results of research in organic chemical compositions for hydrophobic protection of wood with the use of surface and three-dimensional coating techniques of impregnation and chemical compositions. Water absorption indicators, angles of contact on the surface of treated samples are detected herein. Kinetic equation of the moisture diffusion transition in capillary-porous structure of wood is suggested

    Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior

    Full text link
    We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas model. The approach reproduces all major features observed experimentally. We show that the simple van der Waals picture of metastability fails due to the appearance of a complex free-energy landscape with a large number of metastable states. In particular, hysteresis can occur both with and without an underlying equilibrium transition, thermodynamic consistency is not satisfied along the hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    Lattice model of gas condensation within nanopores

    Full text link
    We explore the thermodynamic behavior of gases adsorbed within a nanopore. The theoretical description employs a simple lattice gas model, with two species of site, expected to describe various regimes of adsorption and condensation behavior. The model includes four hypothetical phases: a cylindrical shell phase (S), in which the sites close to the cylindrical wall are occupied, an axial phase (A), in which sites along the cylinder's axis are occupied, a full phase (F), in which all sites are occupied, and an empty phase (E). We obtain exact results at T=0 for the phase behavior, which is a function of the interactions present in any specific problem. We obtain the corresponding results at finite T from mean field theory. Finally, we examine the model's predicted phase behavior of some real gases adsorbed in nanopores

    Unified analysis of terminal-time control in classical and quantum systems

    Full text link
    Many phenomena in physics, chemistry, and biology involve seeking an optimal control to maximize an objective for a classical or quantum system which is open and interacting with its environment. The complexity of finding an optimal control for maximizing an objective is strongly affected by the possible existence of sub-optimal maxima. Within a unified framework under specified conditions, control objectives for maximizing at a terminal time physical observables of open classical and quantum systems are shown to be inherently free of sub-optimal maxima. This attractive feature is of central importance for enabling the discovery of controls in a seamless fashion in a wide range of phenomena transcending the quantum and classical regimes.Comment: 10 page
    corecore