2,906 research outputs found

    Conditional linearizability criteria for a system of third-order ordinary differential equations

    Full text link
    We provide linearizability criteria for a class of systems of third-order ordinary differential equations (ODEs) that is cubically semi-linear in the first derivative, by differentiating a system of second-order quadratically semi-linear ODEs and using the original system to replace the second derivative. The procedure developed splits into two cases, those where the coefficients are constant and those where they are variables. Both cases are discussed and examples given

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure

    Remarks on Renormalization of Black Hole Entropy

    Full text link
    We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure

    Characterization of a Plain Broadband Textile PIFA

    Get PDF
    Bandwidth characteristic of a wearable antenna is one of the major factors in determining its usability on the human body. In this work, a planar inverted-F antenna (PIFA) structure is proposed to achieve a large bandwidth to avoid serious antenna reflection coefficient detuning when placed in proximity of the body. The proposed structure is designed based on a simple structure, in order to provide practicality in application and maintain fabrication simplicity. Two different types of conductive textiles, namely Pure Copper Polyester Taffeta Fabric (PCPTF) and ShieldIt, are used in order to proof its concept, in comparison with a metallic antenna made from copper foil. The design is spaced and fabricated using a 6 mm thick fleece fabric. To cater for potential fabrication and material measurement inaccuracies, both antennas' performance are also investigated and analyzed with varying physical and material parameters. From this investigation, it is found that the proposed structure's extended bandwidth enabled the antenna to function with satisfactory on-body reflection coefficients, despite unavoidable gain and efficiency reduction

    Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions

    Get PDF
    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX, No Figure

    Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls

    Get PDF
    We consider classical and quantum electromagnetic fields in a three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of the frequency Ω\Omega . The photons created by the parametric resonance are distributed in the wave number space around Ω/2\Omega/2 along the axis of the oscillation. When classical waves propagate along the waveguide in the one direction, we observe the amplification of the original waves and another wave generation in the opposite direction by the oscillation of side walls. This can be understood as the classical counterpart of the photon production. In the case of two opposite walls oscillating with the same frequency but with a phase difference, the interferences are shown to occur due to the phase difference in the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi
    corecore