10,747 research outputs found

    Angular momentum conservation for uniformly expanding flows

    Get PDF
    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around of space-time due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses rate of change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation.Comment: 5 revtex4 pages, 3 eps figure

    On the Definition of Averagely Trapped Surfaces

    Full text link
    Previously suggested definitions of averagely trapped surfaces are not well-defined properties of 2-surfaces, and can include surfaces in flat space-time. A natural definition of averagely trapped surfaces is that the product of the null expansions be positive on average. A surface is averagely trapped in the latter sense if and only if its area AA and Hawking mass MM satisfy the isoperimetric inequality 16πM2>A16\pi M^2 > A, with similar inequalities existing for other definitions of quasi-local energy.Comment: 4 page

    A Cosmological Constant Limits the Size of Black Holes

    Full text link
    In a space-time with cosmological constant Λ>0\Lambda>0 and matter satisfying the dominant energy condition, the area of a black or white hole cannot exceed 4π/Λ4\pi/\Lambda. This applies to event horizons where defined, i.e. in an asymptotically deSitter space-time, and to outer trapping horizons (cf. apparent horizons) in any space-time. The bound is attained if and only if the horizon is identical to that of the degenerate `Schwarzschild-deSitter' solution. This yields a topological restriction on the event horizon, namely that components whose total area exceeds 4π/Λ4\pi/\Lambda cannot merge. We discuss the conjectured isoperimetric inequality and implications for the cosmic censorship conjecture.Comment: 10 page

    Quasi-local first law of black-hole dynamics

    Get PDF
    A property well known as the first law of black hole is a relation among infinitesimal variations of parameters of stationary black holes. We consider a dynamical version of the first law, which may be called the first law of black hole dynamics. The first law of black hole dynamics is derived without assuming any symmetry or any asymptotic conditions. In the derivation, a definition of dynamical surface gravity is proposed. In spherical symmetry it reduces to that defined recently by one of the authors (SAH).Comment: Latex, 8 pages; version to appear in Class. Quantum Gra

    Gravitational radiation from dynamical black holes

    Full text link
    An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.Comment: 5 revtex4 pages. Additional comment

    Wyman's solution, self-similarity and critical behaviour

    Full text link
    We show that the Wyman's solution may be obtained from the four-dimensional Einstein's equations for a spherically symmetric, minimally coupled, massless scalar field by using the continuous self-similarity of those equations. The Wyman's solution depends on two parameters, the mass MM and the scalar charge Σ\Sigma. If one fixes MM to a positive value, say M0M_0, and let Σ2\Sigma^2 take values along the real line we show that this solution exhibits critical behaviour. For Σ2>0\Sigma^2 >0 the space-times have eternal naked singularities, for Σ2=0\Sigma^2 =0 one has a Schwarzschild black hole of mass M0M_0 and finally for M02Σ2<0-M_0^2 \leq \Sigma^2 < 0 one has eternal bouncing solutions.Comment: Revtex version, 15pages, 6 figure

    Complex lapse, complex action and path integrals

    Get PDF
    Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the ``3+1'' action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and in particular allows a change of signature between the two. The action and variational equations are manifestly well defined in the Hamiltonian representation, with the momentum fields consequently being complex. The complex action interpolates between the Lorentzian and Riemannian actions as they appear formally in the respective path integrals. Thus the complex-lapse theory provides a unified basis for a path-integral quantum theory of gravity involving both Lorentzian and Riemannian aspects. A major motivation is the quantum-tunnelling scenario for the origin of the universe. Taken as an explanation for the observed quantum tunnelling of particles, the complex-lapse theory determines that the argument of the lapse for the universe now is extremely small but negative.Comment: 12 pages, Te

    Construction and enlargement of traversable wormholes from Schwarzschild black holes

    Full text link
    Analytic solutions are presented which describe the construction of a traversable wormhole from a Schwarzschild black hole, and the enlargement of such a wormhole, in Einstein gravity. The matter model is pure radiation which may have negative energy density (phantom or ghost radiation) and the idealization of impulsive radiation (infinitesimally thin null shells) is employed.Comment: 22 pages, 7 figure

    Note on Signature Change and Colombeau Theory

    Get PDF
    Recent work alludes to various `controversies' associated with signature change in general relativity. As we have argued previously, these are in fact disagreements about the (often unstated) assumptions underlying various possible approaches. The choice between approaches remains open.Comment: REVTex, 3 pages; to appear in GR

    Generalized inverse mean curvature flows in spacetime

    Full text link
    Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen's proof of the Riemannian Penrose inequality.Comment: 21 pages, 1 figur
    corecore