12,256 research outputs found

    Kinematics and energetics of the mesoscale mid-ocean circulation : MODE

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1976The temporal and spatial variability of low frequency moored temperature and velocity observations, obtained as part of the Mid-Ocean Dynamics Experiment (MODE), are analyzed to study the kinematics and energetics of mesoscale eddies in the ocean. The temporal variability of the low frequency motions is characterized by three regimes: very low frequencies with periods greater than 200 days, an eddy energy containing band of 80 to 120 day periods, and high frequencies wìth periods less than 30 days. At very low frequencies, the zonal kinetic energy exceeds the meridional at all depths. In the thermocline, the very low frequency zonal flow dominates the total kinetic energy. The greatest contribution to the kinetic and potential energy in the MODE region, except for the thermocline zonal flow, is from an eddy energy containing band of 80 to 120 day periods. Eddy scale kinetic energy spatial variations are confined to this band. At high frequencies, the kinetic and potential energy scale with frequency as ω-2.5 and with depth in the WKB sense. Energy at high frequencies is partitioned evenly between zonal kinetic, meridional kinetic and potential energy and is homogeneous over 100 km. Using the technique of empirical orthogonal expansion, the vertical structure of the energetically dominant eddies is described by a few modes. The displacement is dominated by a mode with a thermocline maximum and in phase displacements with depth, while the kinetic energy is dominated by an equivalent barotropic mode. A smaller portion of the kinetic and potential energy is associated with out of phase thermocline and deep water currents and displacements. The dynamics of the mesoscale eddies are very nonlinear. Using the vertical veering of the current at MODE Center, the estimated horizontal advection of heat contributes significantly to the low frequency thermal balance. The observed very low frequency anisotropic flow is consistent with the nonlinear eddy spindown models, dominated by cascades of vorticity and energy. At high frequencies, the spectral similarity is consistent with advected geostrophic turbulence.The National Science Foundation supported the work through grants GX29034 and IDO-75-03998 and a graduate fellowship

    Quenched Hadron Spectrum and Decay Constants on the lattice

    Get PDF
    In this talk we present the results obtained from a study of O(2000){\cal O}(2000) (quenched) lattice configurations from the APE collaboration, at 6.0β6.46.0\le\beta\le 6.4, using both the Wilson and the SW-Clover fermion action. We determine the light hadronic spectrum and the meson decay constants. For the light-light systems we find an agreement with the experimental data of 5\sim 5% for mesonic masses and 10\sim 10%-15% for baryonic masses and pseudoscalar decay constants; a larger deviation is present for the vector decay constants. For the heavy-light decay constants we find fDs=237±16MeV,fD=221±17MeV(fDs/fD=1.07(4)),fBs=205±35MeV,fB=180±32MeV(fBs/fB=1.14(8))f_{D_s}=237 \pm 16 MeV, f_{D} = 221 \pm 17 MeV (f_{D_s}/f_D=1.07(4)), f_{B_s} = 205 \pm 35 MeV, f_{B} = 180 \pm 32 MeV (f_{B_s}/f_B=1.14(8)), in good agreement with previous estimates.Comment: 8 pages, latex, Talk given at XXV ITEP Winter School of Physics, Moscow - Russia, 18-27 Feb 199

    Measurement of the Branching Fractions for D^0 → π^-e^+v_e and D^0 → + K^-e^+V_e and Determination of │V_(cd)/V_(cs)│^2

    Get PDF
    Measurements of the exclusive branching fractions B(D^0→π^-e^+ν_e) and B(D^0→K^-e^+ν_e), using data collected at the ψ(3770) with the Mark III detector at the SLAC e^+e^- storage ring SPEAR, are used to determine the ratio of the Kobayashi-Maskawa matrix elements │V_(cd)/V_(cs)│^2 =0.057_(-0.015)^(+0.038)±0.005

    Search for the decay D^0→K^0e^+e^-

    Get PDF
    A search for the decay of the charmed meson D^0→K^0e^+e^- is presented, based on data collected at the ψ(3770) resonance with the Mark III detector at the SLAC storage ring SPEAR. No evidence for this process is found, resulting in an upper limit on the decay branching ratio of 1.7×10^(-3) at the 90% confidence level

    Nicotinic acetylcholine receptor: evidence for a functionally distinct receptor on human lymphocytes.

    Full text link

    How stationary are the internal tides in a high‐resolution global ocean circulation model?

    Full text link
    The stationarity of the internal tides generated in a global eddy‐resolving ocean circulation model forced by realistic atmospheric fluxes and the luni‐solar gravitational potential is explored. The root mean square (RMS) variability in the M 2 internal tidal amplitude is approximately 2 mm or less over most of the ocean and exceeds 2 mm in regions with larger internal tidal amplitude. The M 2 RMS variability approaches the mean amplitude in weaker tidal areas such as the tropical Pacific and eastern Indian Ocean, but is smaller than the mean amplitude near generation regions. Approximately 60% of the variance in the complex M 2 tidal amplitude is due to amplitude‐weighted phase variations. Using the RMS tidal amplitude variations normalized by the mean tidal amplitude (normalized RMS variability (NRMS)) as a metric for stationarity, low‐mode M 2 internal tides with NRMS < 0.5 are stationary over 25% of the deep ocean, particularly near the generation regions. The M 2 RMS variability tends to increase with increasing mean amplitude. However, the M 2 NRMS variability tends to decrease with increasing mean amplitude, and regions with strong low‐mode internal tides are more stationary. The internal tide beams radiating away from generation regions become less stationary with distance. Similar results are obtained for other tidal constituents with the overall stationarity of the constituent decreasing as the energy in the constituent decreases. Seasonal variations dominate the RMS variability in the Arabian Sea and near‐equatorial oceans. Regions of high eddy kinetic energy are regions of higher internal tide nonstationarity. Key Points Internal tide stationarity measured by RMS variability normalized by amplitude Internal tide stationarity correlated with tidal amplitude Strong mesoscale eddies or currents decrease stationarity of internal tidesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107478/1/jgrc20664.pd
    corecore