546 research outputs found
Gravitational Waves from Coalescing Binary Sources
Coalescing binary systems (eg pulsars, neutron stars and black holes) are the
most likely sources of gravitational radiation, yet to be detected on or near
Earth, where the local gravitational field is negligible and the Poincar\'e
symmetry rules. On the other hand, the general theory of gravitational waves
emitted by axially symmetric rotating sources predicts the existence of a
non-vanishing news function. The existence of such function implies that, for a
distant observer, the asymptotic group of isometries, the BMS group, has a
translational symmetry that depends on the orbit periodicity of the source,
thus breaking the isotropy o the Poincar\'e translations. These results suggest
the application of the asymptotic BMS-covariant wave equation to obtain a
proper theoretical basis for the gravitational waves observations.Comment: 4 pages, awarded a honorable mention from the Gravity Research
Foundation 201
de Sitter Galileon
We generalize the Galileon symmetry and its relativistic extension to a de
Sitter background. This is made possible by studying a probe-brane in a flat
five-dimensional bulk using a de Sitter slicing. The generalized Lovelock
invariants induced on the probe brane enjoy the induced Poincar\'e symmetry
inherited from the bulk, while living on a de Sitter geometry. The
non-relativistic limit of these invariants naturally maintain a generalized
Galileon symmetry around de Sitter while being free of ghost-like pathologies.
We comment briefly on the cosmology of these models and the extension to the
AdS symmetry as well as generic FRW backgrounds
On Black Holes in Massive Gravity
In massive gravity the so-far-found black hole solutions on Minkowski space
happen to convert horizons into a certain type of singularities. Here we
explore whether these singularities can be avoided if space-time is not
asymptotically Minkowskian. We find an exact analytic black hole (BH) solution
which evades the above problem by a transition at large scales to self-induced
de Sitter (dS) space-time, with the curvature scale set by the graviton mass.
This solution is similar to the ones discovered by Koyama, Niz and Tasinato,
and by Nieuwenhuizen, but differs in detail. The solution demonstrates that in
massive GR, in the Schwarzschild coordinate system, a BH metric has to be
accompanied by the St\"uckelberg fields with nontrivial backgrounds to prevent
the horizons to convert into the singularities. We also find an analogous
solution for a Reissner-Nordstr\"om BH on dS space. A limitation of our
approach, is that we find the solutions only for specific values of the two
free parameters of the theory, for which both the vector and scalar
fluctuations loose their kinetic terms, however, we hope our solutions
represent a broader class with better behaved perturbations.Comment: 17 LateX page
An Analytical Construction of the SRB Measures for Baker-type Maps
For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle
and Bowen showed the existence of an invariant measure (SRB measure) weakly
attracting the temporal average of any initial distribution that is absolutely
continuous with respect to the Lebesgue measure. Recently, the SRB measures
were found to be related to the nonequilibrium stationary state distribution
functions for thermostated or open systems. Inspite of the importance of these
SRB measures, it is difficult to handle them analytically because they are
often singular functions. In this article, for three kinds of Baker-type maps,
the SRB measures are analytically constructed with the aid of a functional
equation, which was proposed by de Rham in order to deal with a class of
singular functions. We first briefly review the properties of singular
functions including those of de Rham. Then, the Baker-type maps are described,
one of which is non-conservative but time reversible, the second has a
Cantor-like invariant set, and the third is a model of a simple chemical
reaction . For the second example, the
cases with and without escape are considered. For the last example, we consider
the reaction processes in a closed system and in an open system under a flux
boundary condition. In all cases, we show that the evolution equation of the
distribution functions partially integrated over the unstable direction is very
similar to de Rham's functional equation and, employing this analogy, we
explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO
The structure of Gelfand-Levitan-Marchenko type equations for Delsarte transmutation operators of linear multi-dimensional differential operators and operator pencils. Part 1
An analog of Gelfand-Levitan-Marchenko integral equations for multi-
dimensional Delsarte transmutation operators is constructed by means of
studying their differential-geometric structure based on the classical Lagrange
identity for a formally conjugated pair of differential operators. An extension
of the method for the case of affine pencils of differential operators is
suggested.Comment: 12 page
On Non-Linear Actions for Massive Gravity
In this work we present a systematic construction of the potentially
ghost-free non-linear massive gravity actions. The most general action can be
regarded as a 2-parameter deformation of a minimal massive action. Further
extensions vanish in 4 dimensions. The general mass term is constructed in
terms of a "deformed" determinant from which this property can clearly be seen.
In addition, our formulation identifies non-dynamical terms that appear in
previous constructions and which do not contribute to the equations of motion.
We elaborate on the formal structure of these theories as well as some of their
implications.Comment: v3: 22 pages, minor comments added, version to appear in JHE
A note on "symmetric" vielbeins in bimetric, massive, perturbative and non perturbative gravities
We consider a manifold endowed with two different vielbeins
and corresponding to two different metrics and
. Such a situation arises generically in bimetric or massive
gravity (including the recently discussed version of de Rham, Gabadadze and
Tolley), as well as in perturbative quantum gravity where one vielbein
parametrizes the background space-time and the other the dynamical degrees of
freedom. We determine the conditions under which the relation can be
imposed (or the "Deser-van Nieuwenhuizen" gauge chosen). We clarify and correct
various statements which have been made about this issue.Comment: 20 pages. Section 7, prop. 6 and 7. added. Some results made more
precis
Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality
We study the background cosmology of the ghost-free, bimetric theory of
gravity. We perform an extensive statistical analysis of the model using both
frequentist and Bayesian frameworks and employ the constraints on the expansion
history of the Universe from the observations of supernovae, the cosmic
microwave background and the large scale structure to estimate the model's
parameters and test the goodness of the fits. We explore the parameter space of
the model with nested sampling to find the best-fit chi-square, obtain the
Bayesian evidence, and compute the marginalized posteriors and mean
likelihoods. We mainly focus on a class of sub-models with no explicit
cosmological constant (or vacuum energy) term to assess the ability of the
theory to dynamically cause a late-time accelerated expansion. The model
behaves as standard gravity without a cosmological constant at early times,
with an emergent extra contribution to the energy density that converges to a
cosmological constant in the far future. The model can in most cases yield very
good fits and is in perfect agreement with the data. This is because many
points in the parameter space of the model exist that give rise to
time-evolution equations that are effectively very similar to those of the
CDM. This similarity makes the model compatible with observations as
in the CDM case, at least at the background level. Even though our
results indicate a slightly better fit for the CDM concordance model
in terms of the -value and evidence, none of the models is statistically
preferred to the other. However, the parameters of the bigravity model are in
general degenerate. A similar but perturbative analysis of the model as well as
more data will be required to break the degeneracies and constrain the
parameters, in case the model will still be viable compared to the
CDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13),
(3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13)
and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to
referee's comments; references added; acknowledgements modified; all results
completely unchanged; matches version accepted for publication in JHE
Forms on Vector Bundles Over Compact Real Hyperbolic Manifolds
We study gauge theories based on abelian forms on real compact
hyperbolic manifolds. The tensor kernel trace formula and the spectral
functions associated with free generalized gauge fields are analyzed.Comment: Int. Journ. Modern Physics A, vol. 18 (2003), 2041-205
- âŠ