302 research outputs found
Gravitational Lensing of the X-Ray Background by Clusters of Galaxies
Gravitational lensing by clusters of galaxies affects the cosmic X-ray
background (XRB) by altering the observed density and flux distribution of
background X-ray sources. At faint detection flux thresholds, the resolved
X-ray sources appear brighter and diluted, while the unresolved component of
the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray
intensity in the outer halos of clusters might be lower than the sky-averaged
XRB, after the subtraction of resolved sources. Detection of the lensing signal
with a wide-field X-ray telescope could probe the mass distribution of a
cluster out to its virialization boundary. In particular, we show that the
lensing signature imprinted on the resolved component of the XRB by the cluster
A1689, should be difficult but possible to detect out to 8' at the 2-4 sigma
level, after 10^6 seconds of observation with the forthcoming AXAF satellite.
The lensing signal is fairly insensitive to the lens redshift in the range
0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the
faint end slope of the number-flux relation for unresolved X-ray sources, and
can thus help constrain models of the XRB. A search for X-ray arcs or arclets
could identify the fraction of all faint sources which originate from extended
emission of distant galaxies. The probability for a 3 sigma detection of an
arclet which is stretched by a factor of about 3 after a 10^6 seconds
observation of A1689 with AXAF, is roughly comparable to the fraction of all
background X-ray sources that have an intrinsic size of order 1''.Comment: 41 LaTeX pages, 11 postscript figures, 1 table, in AASTeX v4.0
format. To appear in ApJ, April 1, 1997, Vol. 47
A fast empirical method for galaxy shape measurements in weak lensing surveys
We describe a simple and fast method to correct ellipticity measurements of
galaxies from the distortion by the instrumental and atmospheric point spread
function (PSF), in view of weak lensing shear measurements. The method performs
a classification of galaxies and associated PSFs according to measured shape
parameters, and corrects the measured galaxy ellipticites by querying a large
lookup table (LUT), built by supervised learning. We have applied this new
method to the GREAT10 image analysis challenge, and present in this paper a
refined solution that obtains the competitive quality factor of Q = 104,
without any shear power spectrum denoising or training. Of particular interest
is the efficiency of the method, with a processing time below 3 ms per galaxy
on an ordinary CPU.Comment: 8 pages, 6 figures. Metric values updated according to the final
GREAT10 analysis software (Kitching et al. 2012, MNRAS 423, 3163-3208), no
qualitative changes. Associated code available at
http://lastro.epfl.ch/megalu
High precision spectra at large redshift for dynamical DE cosmologies
The next generation mass probes will investigate DE nature by measuring
non-linear power spectra at various z, and comparing them with high precision
simulations. Producing a complete set of them, taking into account baryon
physics and for any DE state equation w(z), would really be numerically
expensive. Regularities reducing such duty are essential. This paper presents
further n-body tests of a relation we found, linking models with DE state
parameter w(z) to const.-w models, and also tests the relation in hydro
simulations.Comment: PASCOS 2010, the 16th International Symposium on Particles, Strings
and Cosmology, Valencia (Spain), July 19th - 23rd, 201
Infrared observations of gravitational lensing in Abell 2219 with CIRSI
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 (z=0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3σ confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of θ_E ≃ 13.7^(+3.9)_(-4.2) arcsec (66 per cent confidence limit). This corresponds to a projected velocity dispersion of σᵥ∼800 km s⁻¹, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125h⁻¹ kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band
Generating non-Gaussian maps with a given power spectrum and bispectrum
We propose two methods for generating non-Gaussian maps with fixed power
spectrum and bispectrum. The first makes use of a recently proposed rigorous,
non-perturbative, Bayesian framework for generating non-Gaussian distributions.
The second uses a simple superposition of Gaussian distributions. The former is
best suited for generating mildly non-Gaussian maps, and we discuss in detail
the limitations of this method. The latter is better suited for the opposite
situation, i.e. generating strongly non-Gaussian maps. The ensembles produced
are isotropic and the power spectrum can be jointly fixed; however we cannot
set to zero all other higher order cumulants (an unavoidable mathematical
obstruction). We briefly quantify the leakage into higher order moments present
in our method. We finally present an implementation of our code within the
HEALPIX packageComment: 22 pages submitted to PRD, astro-ph version only includes low
resolution map
Rejuvenation in the Random Energy Model
We show that the Random Energy Model has interesting rejuvenation properties
in its frozen phase. Different `susceptibilities' to temperature changes, for
the free-energy and for other (`magnetic') observables, can be computed
exactly. These susceptibilities diverge at the transition temperature, as
(1-T/T_c)^-3 for the free-energy.Comment: 9 pages, 1 eps figur
Finite-Temperature Transition into a Power-Law Spin Phase with an Extensive Zero-Point Entropy
We introduce an generalization of the frustrated Ising model on a
triangular lattice. The presence of continuous degrees of freedom stabilizes a
{\em finite-temperature} spin state with {\em power-law} discrete spin
correlations and an extensive zero-point entropy. In this phase, the unquenched
degrees of freedom can be described by a fluctuating surface with logarithmic
height correlations. Finite-size Monte Carlo simulations have been used to
characterize the exponents of the transition and the dynamics of the
low-temperature phase
Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements
Cosmic shear constrains cosmology by exploiting the apparent alignments of
pairs of galaxies due to gravitational lensing by intervening mass clumps.
However galaxies may become (intrinsically) aligned with each other, and with
nearby mass clumps, during their formation. This effect needs to be
disentangled from the cosmic shear signal to place constraints on cosmology. We
use the linear intrinsic alignment model as a base and compare it to an
alternative model and data. If intrinsic alignments are ignored then the dark
energy equation of state is biased by ~50 per cent. We examine how the number
of tomographic redshift bins affects uncertainties on cosmological parameters
and find that when intrinsic alignments are included two or more times as many
bins are required to obtain 80 per cent of the available information. We
investigate how the degradation in the dark energy figure of merit depends on
the photometric redshift scatter. Previous studies have shown that lensing does
not place stringent requirements on the photometric redshift uncertainty, so
long as the uncertainty is well known. However, if intrinsic alignments are
included the requirements become a factor of three tighter. These results are
quite insensitive to the fraction of catastrophic outliers, assuming that this
fraction is well known. We show the effect of uncertainties in photometric
redshift bias and scatter. Finally we quantify how priors on the intrinsic
alignment model would improve dark energy constraints.Comment: 14 pages and 9 figures. Replaced with final version accepted in
"Gravitational Lensing" Focus Issue of the New Journal of Physics at
http://www.iop.org/EJ/abstract/1367-2630/9/12/E0
- …