6,589 research outputs found

    Vibration analysis of a circular disc backed by a cylindrical cavity

    Get PDF
    This paper describes the free vibration analysis of a thin disc vibrating and interacting with an acoustic medium contained in a cylindrical duct. The effects of structural-acoustic coupling are studied by means of an analytical-numerical method that is based upon classical theory and the Galerkin method. The coupling effects are discussed, and results obtained from the analysis are compared with corresponding values obtained both experimentally and from a finite element analysis. There is good agreement between the three sets of results

    Star formation history in the solar neighborhood: the link between stars and cosmology

    Full text link
    Using a cosmological galactic evolutionary approach to model the Milky Way, we calculate the star formation history (SFH) of the solar neighborhood. The good agreement we obtain with the observational inferences suggests that our physical model describes accurately the long term/large spatial trends of the local and global Milky Way SFH. In this model, star formation is triggered by disk gravitational instabilities and self-regulated by an energy balance in the ISM. The drivers of the SFH are the cosmological gas infall rate and the gas surface density determined by the primordial spin parameter. A LambdaCDM cosmology was used throughout.Comment: 8 pages, uses kluwer.cls. Invited talk, to appear in "New Quests in Stellar Astrophysics: The link between Stars and Cosmology", eds. M. Chavez, A. Bressan, A. Buzzoni & D. Mayya, Kluwer Academic Publisher

    Using seismic inversions to obtain an internal mixing processes indicator for main-sequence solar-like stars

    Full text link
    Determining accurate and precise stellar ages is a major problem in astrophysics. These determinations are either obtained through empirical relations or model-dependent approaches. Currently, seismic modelling is one of the best ways of providing accurate ages. However, current methods are affected by simplifying assumptions concerning mixing processes. In this context, providing new structural indicators which are less model-dependent and more sensitive to such processes is crucial. We build a new indicator for core conditions on the main sequence, which should be more sensitive to structural differences and applicable to older stars than the indicator t presented in a previous paper. We also wish to analyse the importance of the number and type of modes for the inversion, as well as the impact of various constraints and levels of accuracy in the forward modelling process that is used to obtain reference models for the inversion. First, we present a method to obtain new structural kernels and use them to build an indicator of central conditions in stars and test it for various effects including atomic diffusion, various initial helium abundances and metallicities, following the seismic inversion method presented in our previous paper. We then study its accuracy for 7 different pulsation spectra including those of 16CygA and 16CygB and analyse its dependence on the reference model by using different constraints and levels of accuracy for its selection We observe that the inversion of the new indicator using the SOLA method provides a good diagnostic for additional mixing processes in central regions of stars. Its sensitivity allows us to test for diffusive processes and chemical composition mismatch. We also observe that octupole modes can improve the accuracy of the results, as well as modes of low radial order.Comment: Accepted for publication in Astronomy and Astrophysic

    Recent measures of the latitude and longitude of jupiter's red spot

    Get PDF
    Latitude and longitude of Jupiter red spot measured from photographic plate

    Latitude and longitude measurements of Jovian features in 1967-68

    Get PDF
    Photographic measurements of latitude and longitude of Jovian feature

    Spectral analysis of Swift long GRBs with known redshift

    Full text link
    We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15-150 keV) of the Swift-BAT detector, the spectral fitting is reliable only for fitting models with 2 or 3 parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, 2 parameters) and cut--off power law (CPL, 3 parameters) models to the time-integrated spectra of the 47 bursts, and present the corresponding parameters, their uncertainties, and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the nuf_nu peak energy Epk. For these GRBs, we calculate the energy fluence and the rest- frame isotropic-equivalent radiated energy, Eiso, as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram E'pk vs Eiso. We confirm a significant correlation between these two quantities (the "Amati" relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high energy power law index frozen to -2.3, obtaining a rather good agreement with the "Amati" relation of non-Swift GRBs.Comment: 16 pages. To appear in MNRAS. Minor changes were introduced in this last versio

    Tethers in space handbook

    Get PDF
    The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended

    Advances in Data Combination, Analysis and Collection for System Reliability Assessment

    Full text link
    The systems that statisticians are asked to assess, such as nuclear weapons, infrastructure networks, supercomputer codes and munitions, have become increasingly complex. It is often costly to conduct full system tests. As such, we present a review of methodology that has been proposed for addressing system reliability with limited full system testing. The first approaches presented in this paper are concerned with the combination of multiple sources of information to assess the reliability of a single component. The second general set of methodology addresses the combination of multiple levels of data to determine system reliability. We then present developments for complex systems beyond traditional series/parallel representations through the use of Bayesian networks and flowgraph models. We also include methodological contributions to resource allocation considerations for system relability assessment. We illustrate each method with applications primarily encountered at Los Alamos National Laboratory.Comment: Published at http://dx.doi.org/10.1214/088342306000000439 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore