21,881 research outputs found

    Untwisting of a cholesteric elastomer by a mechanical field

    Full text link
    A mechanical strain field applied to a monodomain cholesteric elastomer will unwind the helical director distribution. There is an analogy with the classical problem of an electric field applied to a cholesteric liquid crystal, but with important differences. Frank elasticity is of minor importance unless the gel is very weak. The interplay is between director anchoring to the rubber elastic matrix and the external mechanical field. Stretching perpendicular to the helix axis induces the uniform unwound state via the elimination of sharp, pinned twist walls above a critical strain. Unwinding through conical director states occurs when the elastomer is stretched along the helical axis.Comment: 4 pages, RevTeX 3 style, 3 EPS figure

    The origin of short-lived radionuclides and the astrophysical environment of solar system formation

    Full text link
    Based on early solar system abundances of short-lived radionuclides (SRs), such as 26^{26}Al (T1/2=0.74_{1/2} = 0.74 Myr) and 60^{60}Fe (T1/2=1.5_{1/2} = 1.5 Myr), it is often asserted that the Sun was born in a large stellar cluster, where a massive star contaminated the protoplanetary disk with freshly nucleosynthesized isotopes from its supernova (SN) explosion. To account for the inferred initial solar system abundances of short-lived radionuclides, this supernova had to be close (∌\sim 0.3 pc) to the young (â©œ\leqslant 1 Myr) protoplanetary disk. Here we show that massive star evolution timescales are too long, compared to typical timescales of star formation in embedded clusters, for them to explode as supernovae within the lifetimes of nearby disks. This is especially true in an Orion Nebular Cluster (ONC)-type of setting, where the most massive star will explode as a supernova ∌\sim 5 Myr after the onset of star formation, when nearby disks will have already suffered substantial photoevaporation and/or formed large planetesimals. We quantify the probability for {\it any} protoplanetary disk to receive SRs from a nearby supernova at the level observed in the early solar system. Key constraints on our estimate are: (1) SRs have to be injected into a newly formed (â©œ\leqslant 1 Myr) disk, (2) the disk has to survive UV photoevaporation, and (3) the protoplanetary disk must be situated in an enrichment zone permitting SR injection at the solar system level without disk disruption. The probability of protoplanetary disk contamination by a supernova ejecta is, in the most favorable case, 3 ×\times 10−3^{-3}

    [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging

    Get PDF
    Copyright © 2020 American Chemical Society. Funding We thank the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie ITNEuropean Joint Doctorate MOGLYNET (grant agreement No. 675527).Peer reviewedPostprin

    Wavelets: mathematics and applications

    Full text link
    The notion of wavelets is defined. It is briefly described {\it what} are wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are preferred and {\it where} they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given (in particular, to analysis of multiparticle production}. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc

    Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces

    Full text link
    Model sets (or cut and project sets) provide a familiar and commonly used method of constructing and studying nonperiodic point sets. Here we extend this method to situations where the internal spaces are no longer Euclidean, but instead spaces with p-adic topologies or even with mixed Euclidean/p-adic topologies. We show that a number of well known tilings precisely fit this form, including the chair tiling and the Robinson square tilings. Thus the scope of the cut and project formalism is considerably larger than is usually supposed. Applying the powerful consequences of model sets we derive the diffractive nature of these tilings.Comment: 11 pages, 2 figures; dedicated to Peter Kramer on the occasion of his 65th birthda

    Polar Smectic Films

    Full text link
    We report on a new experimental procedure for forming and studying polar smectic liquid crystal films. A free standing smectic film is put in contact with a liquid drop, so that the film has one liquid crystal/liquid interface and one liquid crystal/air interface. This polar environment results in changes in the textures observed in the film, including a boojum texture and a previously unobserved spiral texture in which the winding direction of the spiral reverses at a finite radius from its center. Some aspects of these textures are explained by the presence of a Ksb term in the bulk elastic free energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR

    Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry

    Full text link
    We study both theoretically and experimentally switching dynamics in surface stabilized ferroelectric liquid crystal cells with asymmetric boundary conditions. In these cells the bounding surfaces are treated differently to produce asymmetry in their anchoring properties. Our electro-optic measurements of the switching voltage thresholds that are determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the hysteresis loop. We examine the predictions of the uniform dynamical model with the anchoring energy taken into account. It is found that the asymmetry effects are dominated by the polar contribution to the anchoring energy. Frequency dependence of the voltage thresholds is studied by analyzing the properties of time-periodic solutions to the dynamical equation (cycles). For this purpose, we apply the method that uses the parameterized half-period mappings for the approximate model and relate the cycles to the fixed points of the composition of two half-period mappings. The cycles are found to be unstable and can only be formed when the driving frequency is lower than its critical value. The polar anchoring parameter is estimated by making a comparison between the results of modelling and the experimental data for the shift vs frequency curve. For a double-well potential considered as a deformation of the Rapini-Papoular potential, the branch of stable cycles emerges in the low frequency region separated by the gap from the high frequency interval for unstable cycles.Comment: 35 pages, 15 figure

    Two New Candidate Planets in Eccentric Orbits

    Get PDF
    Doppler measurements of two G-type main-sequence stars, HD210277 and HD168443, reveal Keplerian variations that imply the presence of companions with masses (M sin i) of 1.28 and 5.04 M_Jup and orbital periods of 437 d and 58 d, respectively. The orbits have large eccentricities of e=0.45 and e=0.54, respectively. All 9 known extrasolar planet candidates with a=0.2-2.5 AU have orbital eccentricities greater than 0.1, higher than that of Jupiter (e=0.05). Eccentric orbits may result from gravitational perturbations imposed by other orbiting planets or stars, by passing stars in the dense star-forming cluster, or by the protoplanetary disk. Based on published studies and our near-IR adaptive optics images, HD210277 appears to be a single star. However, HD168443 exhibits a long-term velocity trend consistent with a close stellar companion, as yet undetected directly.Comment: AASTeX, 31 pages including 10 Postscript figures, to appear in the Astrophysical Journal (July 1999
    • 

    corecore