308 research outputs found

    Colour Dipoles and Saturation

    Get PDF
    We employ values of the colour dipole cross section extracted from electroproduction and photoproduction data to show that gluon saturation effects are not required by the current HERA data but will become important in the THERA energy region.Comment: 3 pages, 2 figures. Talk given by G.S. at DIS 2000(Liverpool, April 2000

    Monte Carlo results for the hydrogen Hugoniot

    Full text link
    We propose a theoretical Hugoniot obtained by combining results for the equation of state (EOS) from the Direct Path Integral Monte Carlo technique (DPIMC) and those from Reaction Ensemble Monte Carlo (REMC) simulations. The main idea of such proposal is based on the fact that DPMIC provides first-principle results for a wide range of densities and temperatures including the region of partially ionized plasmas. On the other hand, for lower temperatures where the formation of molecules becomes dominant, DPIMC simulations become cumbersome and inefficient. For this region it is possible to use accurate REMC simulations where bound states (molecules) are treated on the Born-Oppenheimer level using a binding potential calculated by Kolos and Wolniewicz. The remaining interaction is then reduced to the scattering between neutral particles which is reliably treated classically applying effective potentials. The resulting Hugoniot is located between the experimental values of Knudson {\textit{et al.}} \cite{1} and Collins {\textit{et al.}} \cite{2}.Comment: 10 pges, 2 figures, 2 table

    The colour dipole approach to small-x processes

    Get PDF
    We explain why it is possible to formulate a wide variety of high energy (small-x) photon-proton processes in terms of a universal dipole cross section and compare and contrast various parameterizations of this function that exist in the literature.Comment: 6 pages, latex, 2 figures. Contribution to Durham Collider Workshop (Sept 99) proceeding

    Hadron formation in high energy photonuclear reactions

    Get PDF
    We present a new method to account for coherence length effects in a semi-classical transport model. This allows us to describe photo- and electroproduction at large nuclei (A>12) and high energies using a realistic coupled channel description of the final state interactions that goes beyond simple Glauber theory. We show that the purely absorptive treatment of the final state interactions can lead to wrong estimates of color transparency and formation time effects in particle production. As an example, we discuss exclusive rho^0 photoproduction on Pb at a photon energy of 7 GeV as well as K^+ production in the photon energy range 1-7 GeV.Comment: 14 pages, 6 figures, version published in Phys. Rev.

    Thermodynamic properties and electrical conductivity of strongly correlated plasma media

    Full text link
    We study thermodynamic properties and the electrical conductivity of dense hydrogen and deuterium using three methods: classical reactive Monte Carlo (REMC), direct path integral Monte Carlo (PIMC) and a quantum dynamics method in the Wigner representation of quantum mechanics. We report the calculation of the deuterium compression quasi-isentrope in good agreement with experiments. We also solve the Wigner-Liouville equation of dense degenerate hydrogen calculating the initial equilibrium state by the PIMC method. The obtained particle trajectories determine the momentum-momentum correlation functions and the electrical conductivity and are compared with available theories and simulations

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    Extracting the dipole cross-section from photo- and electro-production total cross-section data

    Get PDF
    We report on a successful attempt to extract the cross-section for the high-energy scattering of colour dipoles of fixed transverse size off protons using electroproduction and photoproduction total cross-section data, subject to the constraint provided by the ratio of the overall photon dissociation cross-section to the total cross-section.Comment: LaTeX2e, 29 pages, 11 figures, submitted to Phys Rev D. Because of error in parameter assignment, one parameter removed and tables of parameter fits and affected figs 2, 4-9 replaced. Error in figure caption corrected. Reference update

    A Unified Model of Exclusive ρ0\rho^0, ϕ\phi and \jpsi Electroproduction

    Full text link
    A two-component model is developed for diffractive electroproduction of ρ0\rho^0, ϕ\phi and \jpsi, based on non-perturbative and perturbative two-gluon exchange. This provides a common kinematical structure for non-perturbative and perturbative effects, and allows the role of the vector-meson vertex functions to be explored independently of the production dynamics. A good global description of the vector-meson data is obtained.Comment: 30 pages, 35 figure

    From Deep Inelastic Scattering to Photoproduction: A Unified Approach

    Get PDF
    The strikingly different high energy behaviours of real photoabsorption cross-sections with Q^2 = 0 and the low x proton structure function at large Q^2 are studied from a laboratory frame viewpoint, in which the x and Q^2 dependence reflects the space-time structure of the interaction. This is done using a simple model which incorporates hadron dominance, but attributes the striking enhancement observed at HERA at very low x and high Q^2 to contributions from heavy long-lived fluctuations of the incoming photon. Earlier published predictions of the model for the then unknown behaviour of the structure function at small x and intermediate Q^2 are shown to be strikingly confirmed by recent experimental data. A simultaneous analysis of real photoabsorption data and structure function data for 0 <= x < 0.1 and 0 <= Q^2 <= 15 GeV^2 is then reported. An excellent fit is obtained, with all parameters in the restricted ranges allowed by other physical requirements.Comment: 23 pages, LaTex, 11 figures, Submitted to Physical Revie

    Structure Functions of the Nucleon and their Interpretation

    Get PDF
    The current status of measurements of the nucleon structure functions and their understanding is reviewed. The fixed target experiments E665, CCFR and NMC and the HERA experiments H1 and ZEUS are discussed in some detail. The extraction of parton momentum distribution functions from global fits is described, with particular attention paid to much improved information on the gluon momentum distribution. The status of alpha_s measurements from deep inelastic data is reviewed. Models and non-perturbative approaches for the parton input distributions are outlined. The impact on the phenomenology of QCD of the data at very low values of the Bjorken x variable is discussed in detail. Recent advances in the understanding of the transition from deep inelastic scattering to photoproduction are summarised. Some brief comments are made on the recent HERA measurements of the ep NC and CC cross-sections at very high Q2.Comment: 196 pages, 79 figures, uses ijmpa.sty and psfig.tex (included
    corecore