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1 Introduction

Photon-hadron interactions at high energies can be described in the rest
frame of the hadron using a picture in which the incoming photon undergoes
a fluctuation into virtual partonic or hadronic states, which subsequently in-
teract strongly with the hadron. A number of singly-dissociative diffractive
processes, namely elastic Compton scattering, photon dissociation, exclu-
sive vector meson production and deeply virtual Compton scattering, can
be formulated in terms of a quantity, the colour dipole cross-section, which
is universal for a given hadron target [1, 2, 3, 4]. We report on a success-
ful attempt to extract the cross-section for scattering colour dipoles of fixed
transverse size off protons using both electroproduction and photoproduction
γp total cross-section data, subject to the constraint provided by the ratio
of the overall photon dissociation cross-section to the total cross-section.

We begin by briefly summarising the colour dipole model of diffraction; we
then describe the assumed forms of the dipole cross-section and the photon
wave functions before discussing the data fits and the resulting values of the
dipole cross-section.

2 Colour dipoles and diffraction

2.1 The γp total cross-section

Our first task is to introduce the colour dipole cross-section and relate it to
the γp total cross-section. Here we follow closely the treatment of [5, 6].
Of particular utility in the study of diffractive scattering is a decomposition
of the strongly interacting fluctuations of the photon into a superposition of
Fock states in the quark-gluon basis:

|γ〉 =
∑

|qq̄〉+ |qq̄g〉+ higher Fock states . (1)

We define r as the transverse separation averaged over all orientations
of the quark-antiquark pair and z as the fraction of the light-cone energy
of the photon carried by one of the pair (Fig. 1). Quark-antiquark states
with definite values of z and r preserve these values during the diffractive
process; or, to put it another way, they are eigenstates of the scattering
matrix T̂ when it is restricted to diffractive processes. This we shall call
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the diffraction operator. The quark-antiquark eigenstates are called colour
dipoles. Expanding the virtual photon in these states gives

|γ〉 =

∫
dzd2r ψ(z, r)|z, r〉+ higher Fock states, (2)

where ψ(z, r) is the light cone wave function of the photon.
The diffractive process modulates the light cone wave function by the

eigenvalue τ of the diffraction operator:

T̂ |z, r〉 = iτ(b, s; z, r)|z, r〉. (3)

Here b is the impact parameter of the dipole with respect to the proton
centre, being a weighted sum of the individual impact parameters b1, b2 of its
constituents: [7]

b = |b|
b = zb1 + (1− z)b2. (4)

The factor i in (3) is inserted for convenience; it ensures that τ is predomi-
nantly real (since diffractive amplitudes are predominantly imaginary).

Consider the γ∗p total cross-section in deep inelastic scattering. We first
express the elastic scattering amplitude for γ∗p→ γ∗p in terms of the Man-
delstam variables s = W 2 and t, which can be done by a Fourier transform
with respect to the momentum conjugate to b, namely the perpendicular part
of the proton momentum transfer: q′ = p− p′. So we arrive at

Ael(s, t) =

∫
d2b eiq′⊥·b〈γ|T̂ |γ〉. (5)

Use of the optical theorem leads to

σγ∗p
T,L =

∫
dzd2r |ψT,L

γ (z, r)|2
∫

d2b τ(s, b; z, r)

s
. (6)

The second integral expression defines the colour dipole cross-section:∫
d2b τ(s, b; z, r)

s
≡ σ(s, r, z). (7)

This is the total cross-section for scattering dipoles of a specified configura-
tion (z, r) off a proton.

3



2.2 Other processes

There are other interesting processes which involve the dipole cross-section:
vector meson production and photon dissociation. The formulation of the
first is straightforward. The differential cross-section is given by:

dσV
T,L

dt

∣∣∣∣∣
t=0

=
1

16π

[∫
dzd2r ψ∗

V (z, r)ψT,L
γ (z, r)σ(s, r, z)

]2

(8)

For photon dissociation, we can express the final state as an incoherent
sum of the diffractive eigenstates (dipole states): [6]

dσD
T,L

dt

∣∣∣∣∣
t=0

=
1

16πs2

∑
k

|〈γT,L|T̂ |z, r〉|2 (9)

and hence

dσD
T,L

dt

∣∣∣∣∣
t=0

=
1

16π

∫
dzd2r|ψT,L

γ (z, r)|2σ2(s, r, z). (10)

Note that only that subset of the diffractive dissociation final state which is
composed exclusively of a quark–anti-quark pair has been included in this
expression.

The dipole cross-section thus constitutes a link between three distinct
physical processes. If the dipole cross-section is known, then vector meson
wave functions predicted from models can be inserted in (8) and the models
tested by comparison of the result with experiment. Alternatively, the vector
meson wave function itself can be extracted.

3 Parametric forms

In what follows, our aim is to extract the dipole cross-section from total cross-
section data for virtual photoabsorption by protons (structure function and
real photoabsorption data); and to use the result to predict the contribution
to the photon dissociation rate from dipole scattering. In order to do this,
it is necessary to assume parametric forms for the dipole cross-section which
embody reasonable theoretical requirements, but are otherwise flexible. Here
we describe the form used in our fits, together with our assumptions for the
photon wavefunction.
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3.1 The dipole cross-section

The dipole cross-section is in general a function of z, s = W 2 and r. However
a non-perturbative calculation reveals little z dependence [7] and we shall
neglect it completely in what follows.

Following other authors [8, 9] we assume the existence of two distinct
terms which carry a Regge type s dependence: the hard term, which is
assumed to dominate at small r but vanish in the limit of large r; and the
soft term, with an s exponent close to zero, which is assumed to dominate
at large r and saturate. Specifically, we assume

σ(s, r) = σsoft(s, r) + σhard(s, r)

where the r-dependences are given by

σsoft(s, r) = aS
0

(
1− 1

1 + (aS
1 r + aS

2 r
2)2

)
(r2s)λS

σhard(s, r) = (aH
1 r + aH

2 r
2 + aH

3 r
3)2 exp(−ν2

Hr)(r
2s)λH . (11)

In these formulae the energy variable s has an associated r2 factor, which
yields an implicit Q2 dependence and approximate scaling on integrating
over the photon wavefunction. Apart from this, both terms possess a lim-
iting r2 dependence at small r in accordance with colour transparency† ar-
guments [11]. The squared polynomials in r provide a fine tuning of the r
dependence that is strictly non-negative.

3.2 The photon wavefunction

In the first instance, we used the tree level QED form of the photon light
cone wave function:

|ψL(z, r)|2 =
6

π2
α

nf∑
q=1

e2qQ
2z2(1− z)2K2

0 (εr) (12)

|ψT (z, r)|2 =
3

2π2
α

nf∑
q=1

e2q
{
[z2 + (1− z)2]ε2K2

1 (εr) +m2
fK

2
0(εr)

}
(13)

†Colour transparency arguments usually assume a parameterisation in x, which con-
tains an implicit Q2 dependence, rather than s. It is unnatural to have a Q2 dependence
in the dipole cross-section itself [10] and we prefer to introduce it as the transform of an
additional r dependence via the photon wave function.
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where

ε2 = z(1− z)Q2 +m2
f ,

K0 and K1 are modified Bessel functions and the sum is over quark flavours.
The quark masses can be neglected at large Q2, but are important at low Q2.
Here we assume three light quark flavours with a generic value m2

f = 0.08
GeV2. This corresponds roughly to a constituent quark mass and enables
good fits to real as well as virtual photon data to be obtained. The use of a
constituent as opposed to a current quark mass can be regarded as a partial
reflection of confinement. Subsequently we found it necessary to incorporate
other confinement effects in the wavefunction, as described below.

Finally, the absence of a z dependence in the dipole cross-section allows
us to explicitly integrate over it in (6) to give

σγ∗p
tot =

∫
dz d2r (|ψT (z, r)|2 + |ψL(z, r)|2)σ(s, r)

=
6

π2
α

nf∑
q=1

e2q

∫
d2r

G(r)

r2
σ(s, r), (14)

for σ = σT + σL, where

G(r) =∫ 1

0

dzr2

{
[Q2z2(1− z)2 +

m2
f

4
]K2

0(εr) +
[z2 + (1− z)2]ε2K2

1 (εr)

4

}
.(15)

4 Extracting the dipole cross-section

4.1 The data set

The F2 data set consisted of HERA 1994 and 1995 data from the H1 [12, 13]
and ZEUS [14, 15, 16, 17] experiments, together with the fixed target E665
values [18]. This was combined with the very precise intermediate energy
photoproduction data [19] plus the two high energy points from H1 [20] and
ZEUS [21] respectively. The following cuts were imposed:

• A cut in s (s ≥ 100 GeV2) to ensure the data was sufficiently high
energy.
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• A cut in x (0 ≤ x ≤ 0.01) to ensure the data was diffractive.

• A cut in Q2 (Q2 ≤ 60 GeV2).

Altogether there were 345 F2 and 20 photoabsorption data points, compared
to 10 adjustable parameters in our final fits, described below.

In fitting these data, the purely diffractive contribution described above
was supplemented by a small non-diffractive component arising from the
leading meson exchange trajectories. This was assumed to be given by the
empirical Donnachie–Landshoff form: [22]

FR
2 = 0.098 x0.4525

(
Q2

Q2 + 0.0111

)0.5475

(electroproduction)

σR
γp = 0.3318 s−0.4525 GeV−2 (photoproduction). (16)

Its contribution was always less than 15% for photoproduction and typically
3% or less for electroproduction.

4.2 The fits

The inversion of integral equations of the type in (14) presents notorious
problems of non-uniqueness and instability (sensitivity to small alterations
in input data) of the resulting function [23, 24]. Certain features of our fits,
however, mitigate these effects. Our parameterization ensures that the dipole
cross-section is strictly positive, as is essential from its physical interpreta-
tion, and this already goes a long way to ensure that the output is robust
towards data fluctuations. Further, we have imposed many additional con-
straints from physical considerations which limit the degree of arbitrariness
in the final fit. Nevertheless, we were unable to achieve a positive definite
error matrix for our fits so that the errors quoted below are approximate.

4.2.1 Fits with a QED wavefunction

Using the QED photon wave functions of (12) led to successful fits to the γp
total cross-section data using the above and other similar parameterizations.
However, although the χ2 values typically ranged from 0.9 to 1.2 per degree
of freedom, this was achieved at the price of unphysically large dipole cross-
sections for dipole sizes greater than or of order 1 fm. For example, these
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were found to be of order 100 mb at
√
s = 100 GeV, compared with a ρ0N

cross-section of about 25 mb [25].
Such a large dipole cross-section has the effect of predicting much too

high a rate for diffractive processes, which are more sensitive to large dipoles
since the dipole cross-section is squared in (10). This rate can be calculated
from our parameterisation using (10) and integrating over t using the relation

dσD

dt

∣∣∣∣ =
dσD

dt

∣∣∣∣
t=0

exp(−b|t|) , (17)

where for the slope parameter b we used the value 7.2 GeV−2 [26]. This leads
to predicted diffractive cross-sections which are typically over 45% of the
total for real photons. In contrast, the experimental values are 22.2 ± 3.2%
(s = 3.5×104 GeV2) [27] according to the H1 Collaboration and 13.3±3.6%
(s = 4× 104 GeV2) [28] according to the ZEUS Collaboration.

Thus, in spite of the apparent success of the fits, there are clearly serious
shortcomings in the above approach. This is confirmed by both the flexibility
of the functional forms chosen, and the fact that we could not fit the data at
all when we impose reasonable limits on the cross-sections for large dipoles.
The obvious suspect is the assumed form of the photon wave function at
large transverse size, where confinement effects are surely significant.

4.2.2 Modifying the photon wave function

We adopt a pragmatic, a posteriori approach to this problem by modifying
the photon wave function so that the soft contribution to the dipole cross-
section is brought into line with the above experimental constraints, while
the hard contribution is unaltered.

As mentioned above, the high value for the diffractive to total cross-
section ratio is indicative of inflated values of the dipole cross-section at
large r. If the photon wave function were larger at those large r values for
which the integrand of (6) is still appreciable, then the value of the diffractive
cross-section would be smaller. Consequently, we multiply G(r) by a shifted
Gaussian:

f(r) =
1 +B exp(−c2(r − R)2)

1 +B exp(−c2R2)
. (18)

This form enables the width and height of the enhancement to be controlled
independently while keeping a factor of close to unity at small r.

8



The resulting behaviour of G(r) is shown in Fig. 2 for the parameter
values of our final fit I, described below. The behaviour at both small and
large r-values is very similar to that suggested by a successful “off-diagonal”
generalised vector dominance model [29], where the probability distribution
of scattering eigenstates exhibits peaks for cross-sections of hadronic size on
an otherwise monotonic decrease with σ [30].

4.2.3 Fits with the modified wave function

On refitting the data, we were able to adjust the ratio of diffractive to to-
tal cross-section for photoproduction to any reasonable value by adjusting
the value of the saturation parameter aS

0 . In addition, we fixed the value of
the exponent λS to ensure reasonable agreement with the high energy real
photoabsorption data points, which are of low statistical significance, as de-
scribed below. Two fits I and II are reported here and summarised in Tables
1 and 2. They differ in that they give diffractive ratios at

√
s of 180 GeV

of 14% and 23% to agree to within 2% with ZEUS and H1 photoproduction
values respectively. Since the fits are similar, we shall concentrate on Fit I,
commenting briefly on the comparison with fit II where appropriate.

The quality of the fit is illustrated in Fig. 3. The fit has a good χ2 but not
so low as to indicate overfitting and the contribution from the very precise
intermediate photoabsorption data is reasonably small. At high energies,
the photoabsorption total cross-section lies somewhat above the ZEUS point
especially, even though the soft term s exponent λS was given a slightly low
value 0.06 compared to the canonical Donnachie-Landshoff [22] value of 0.08
to improve the agreement. However, these data values are low in comparison
with a generalised vector dominance based extrapolation from low Q2 ZEUS
data [31]. As regards the hard term, its s exponent λH is consistent with the
‘hard pomeron’ intercept of 1.418 obtained by Donnachie and Landshoff [9].

The predictions for the ratio of diffractive to total cross-section are shown
in Fig. 4. As can be seen, there is little variation with Q2, which accords
with the Q2 independence of F

D(2)
2 (β,Q2). The weak s dependence is also in

line with experiment [32].

4.2.4 The dipole cross-section

The energy dependence of the dipole cross-section resulting from Fit I and its
decomposition into hard and soft components are shown in Fig. 5 and Fig. 6
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respectively. In addition, the contribution to the total photoabsorption cross-
section arising from dipoles of different sizes is shown in Fig. 7, showing that
the dipole cross-section is essentially unconstrained by the data for dipole
sizes above about 1.5 fm. Below this the results accord well with reasonable
physical expectations, with the soft pomeron dominating the large r/low Q2

behaviour and the hard pomeron dominating at low r/high Q2 when the
energy is high enough. In addition, dipoles of order 1 fm have cross-sections
commensurate with typical hadronic cross-sections. The precise value is sen-
sitive to the diffractive ratio imposed in photoproduction, as shown in Fig. 8,
where the dipole cross-sections resulting from Fit I (with the ZEUS value
imposed) and Fit II (with the H1 value imposed) are compared.

4.2.5 The effect of charm

We have investigated the effect of including a charm contribution, assuming
dipoles of the same transverse size have the same cross section irrespective
of flavour. We have adopted a minimalist approach in assuming that the
effect of charm flavour on the photon wave function occurs only through the
charm mass, leaving the large r peak, f(r), for example, unchanged. This
leads to an additional term for G(r), of the same form as before but with m2

f

appropriate to a charmed quark, and weighted 2/3 in accordance with the
squared charge coefficient of (14). The extra term has the effect of increasing
the small dipole flux at large Q2.

Details of a fit (fit III) which includes a contribution from charm with
an assumed m2

C of 1.4 GeV2 are given in Table 3.‡ We have kept the same
normalisation parameter aS

0 as fit I to ensure the same diffractive ratio. A
comparison of the resulting dipole cross section with that of fit I is displayed
in Fig. 9.

As might be expected, the hard term of the dipole cross section is sup-
pressed, while the soft term is little affected. Very little effect on the diffrac-
tive ratio is observed. A comparison of the predicted F cc̄

2 with data is given
in Fig. 10 showing broad agreement. To gauge the effect of increasing the
charm mass, we compare predictions from a fit (fit IV) having a larger m2

C of
2.3 GeV2 with the same data in Fig. 11. Within the limitations of the data,
the lower charm mass value is preferred.

‡The charm contribution will be significant for Q2 values in the perturbative region,
which makes a choice of a running quark mass appropriate. The charm mass is estimated
by the Particle Data Group to lie in the range 1.1 to 1.4 GeV.[33]
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4.2.6 Other approaches

A number of other authors have attempted to determine the dipole proton
cross-section.[34, 7, 35, 36, 1, 37, 38] The closest in spirit to our approach is
that of Golec-Biernat and Wüsthoff [39], who achieve a good fit with a re-
markably simple parameterisation of the dipole cross-section, which depends
on r and x rather than r and s as here. Their approach also differs from our
own in two other ways. Firstly, they do not fit the accurate photoproduc-
tion data, so that they are less sensitive to large dipoles and consequently to
confinement effects; and secondly they impose saturation at low x (or high
s) as well as at large interquark separations. Our own success in achieving a
fit with no saturation in the energy variable indicates that the present data
do not require it.

5 Conclusions

We have succeeded in obtaining a fit to photoabsorption data with Q2 ≤ 60
GeV2, including real photon data, using a parameterised form of the colour
dipole cross-section. This has required modifying the effective photon wave
function to take account of non-perturbative effects. The result is consistent
with the cited experimental constraints from diffractive dissociation data.

The next step is to develop the model so as to address the more detailed
diffractive dissociation experimental data in the form of the F

D(3)
2 structure

function. Also, we should include contributions from higher Fock states, such
as the |qq̄g〉, which will dominate at low β [40].

We should also be able to apply our parameterisation to the prediction of
both vector meson production and deeply virtual Compton scattering cross-
sections.
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7 Tables

Total χ2 311 (0.88 per d.o.f.)

λS 0.06 (fixed) λH 0.387± 0.005

aS
0 30.05 (fixed)

aS
1 0.12± 0.01 aH

1 0.99± 0.07

aS
2 −0.202± 0.005 aH

2 0.7± 0.1

aH
3 −6.23± 0.08

ν2
H 4.36± 0.02

B 6.4± 0.1 c2 0.205± 0.004

R 6.46± 0.03 m2 0.08 (fixed)

Photoabsorption data (Q2 = 0)
Data set Number of points χ2 per data point
Caldwell 18 1.5
H1 1 2.1
ZEUS 1 3.9

Table 1: Fit I, satisfying the ZEUS diffractive ratio for real photons.
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Total χ2 310 (0.87 per d.o.f.)

λS 0.06 (fixed) λH 0.380± 0.005

aS
0 60.28 (fixed)

aS
1 0.032± 0.005 aH

1 0.0± 0.07

aS
2 −0.094± 0.002 aH

2 7.9± 0.2

aH
3 −13.9± 0.1

ν2
H 4.91± 0.02

B 2.40± 0.05 c2 0.152± 0.005

R 6.08± 0.05 m2 0.08 (fixed)

Photoabsorption data (Q2 = 0)
Data set Number of points χ2 per data point
Caldwell 18 1.5
H1 1 1.9
ZEUS 1 3.8

Table 2: Fit II, satisfying the H1 diffractive ratio for real photons.
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Total χ2 315 (0.89 per d.o.f.)

λS 0.06 (fixed) λH 0.380± 0.005

aS
0 29.90 (fixed)

aS
1 0.056± 0.008 aH

1 0.47± 0.05

aS
2 −0.144± 0.004 aH

2 2.5± 0.1

aH
3 −6.56± 0.07

ν2
H 4.22± 0.02

B 6.8± 0.1 c2 0.342± 0.008

R 5.67± 0.03
m2

L 0.08 (fixed) m2
C 1.4 (fixed)

Photoabsorption data (Q2 = 0)
Data set Number of points χ2 per data point
Caldwell 18 1.5
H1 1 2.2
ZEUS 1 4.0

Table 3: Fit III, incorporating the charm contribution, with two mass squared
parameters: m2

L for the light quarks and m2
C for the charm quark. The

diffractive ratio is the same as for fit I.
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8 Figure Captions

Figure 1 The diffractive process from a mixed position-momentum view-
point. Transverse components are spatial; non-transverse components are
light cone momenta.

Figure 2 The weight function f(r)G(r)/r for different Q2 (fit I). The peak
at low Q2 represents the modification to the photon wave function.

Figure 3 Representative sample of fitted data points for the total cross-
section σtot

γp compared with curves calculated from the parameterised dipole
cross-section for different Q2 values (fit I).

Figure 4 Ratio of the overall singly dissociative diffractive cross-section to
the total cross-section for fit I (solid line) and fit II (dotted line).

Figure 5 The dipole cross-section at different energies (fit I).

Figure 6 Hard and soft contributions to the dipole cross-section (fit I).

Figure 7 The relative weighting of the contributions to the total photoab-
sorption cross-sections from dipoles of different size (fit I).

Figure 8 Comparison of the dipole cross-section of fit I (solid line) with
that obtained in fit II (dotted line) at s = 100 GeV2. The two fits were
constrained to the ZEUS and H1 values for the diffractive ratio respectively.

Figure 9 Comparison at large and small energies of the dipole cross-section
of fit I with that obtained in fit III where a charm contribution was included.

Figure 10 Comparison of the charm structure function F cc̄
2 predicted from

fit III (m2
C = 1.4 GeV2) with experimental data. [41, 42] (Points at the same

x have been displaced slightly for clarity.)

Figure 11 Comparison of the charm structure function F cc̄
2 predicted from

fit IV (m2
C = 2.3 GeV2) with experimental data. [41, 42] (Points at the same

x have been displaced slightly for clarity.)
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9 Figures
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r - transverse separation of pair

Figure 1: The diffractive process from a mixed position-momentum view-
point. Transverse components are spatial; non-transverse components are
light cone momenta.
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Figure 2: The weight function f(r)G(r)/r for different Q2 (fit I). The peak
at low Q2 represents the modification to the photon wave function.
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Figure 3: Representative sample of fitted data points for the total cross-
section σtot

γp compared with curves calculated from the parameterised dipole
cross-section for different Q2 values (fit I).
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Figure 4: Ratio of the overall singly dissociative diffractive cross-section to
the total cross-section for fit I (solid line) and fit II (dotted line).
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Figure 5: The dipole cross-section at different energies (fit I).
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Figure 6: Hard and soft contributions to the dipole cross-section (fit I).
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Figure 7: The relative weighting of the contributions to the total photoab-
sorption cross-sections from dipoles of different size (fit I).
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Figure 8: Comparison of the dipole cross-section of fit I (solid line) with
that obtained in fit II (dotted line) at s = 100 GeV2. The two fits were
constrained to the ZEUS and H1 values for the diffractive ratio respectively.
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Figure 9: Comparison at large and small energies of the dipole cross-section
of fit I with that obtained in fit III where a charm contribution was included.
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Figure 10: Comparison of the charm structure function F cc̄
2 predicted from

fit III (m2
C = 1.4 GeV2) with experimental data. [41, 42]

(Points at the same x have been displaced slightly for clarity.)

28



x x

F2
cc        ¯

F2
cc        ¯H1 ZEUS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
-4

10
-3

Figure 11: Comparison of the charm structure function F cc̄
2 predicted from

fit IV (m2
C = 2.3 GeV2) with experimental data. [41, 42]

(Points at the same x have been displaced slightly for clarity.)
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