21 research outputs found

    CVRP with sequence based pallet loading and axle weight restrictions with and without dense packing

    Get PDF
    Abstract This paper presents an Iterated Local Search (ILS) for the CVRP with sequence based pallet loading and axle weight restrictions with and without dense packing. The problem deals with the distribution of pallets to different locations while taking into account that items may not be shifted during the trip and that axle weight limits need to be respected. The structure of the metaheuristic as well as preliminary results will be discussed

    Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p &amp;lt; 0.001) and mandibular teeth (p &amp;lt; 0.001). Additional significantly associated factors were Triadan number in mandibular (p = 0.009) and the mesiodistal length of the occlusal surface of maxillary teeth (p = 0.01). Experimentally induced crown fractures that extended below the simulated bone level were more frequently associated with pulp horn exposure (p &amp;lt; 0.001). In the second group, significant lower fracture loads were recorded in teeth with fissures (mandibular p = 0.006; maxillary p &amp;lt; 0.001), compared to fissure-free teeth.Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</jats:p

    Table_4_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p

    Countermeasures for reducing radioactive contamination of farm animals and farm animal products

    No full text
    A summary is given of the range and effectiveness of different available countermeasures which can reduce the radiation dose arising from the radioactive contamination of food products from animals. The choice of which countermeasure is suitable for each particular situation will depend on many factors. Consideration should be given not only to the effectiveness of each countermeasure in terms of reduction of radionuclide content, but also to its practicality and cost, particularly where deposition levels are high or where high contamination levels in animal food products persist for a long period of time. Effective countermeasures which can reduce radiocaesium contamination of milk and meat from farmed animals by more than a factor of 10 have been developed, tested and used during the last 30 years. Less progress has been made in identifying effective binders for reducing levels of the other important contaminating radionuclides, such as I and Sr, in animal food products

    Table_3_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p

    Table_6_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p

    Table_2_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p

    Table_5_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p

    Table_1_Fracture Resistance of Equine Cheek Teeth With and Without Occlusal Fissures: A Standardized ex vivo Model.PDF

    No full text
    Background:Ex vivo fracture models are frequently used in human dentistry to provide insights in the fracture mechanisms of teeth. Equine cheek teeth fractures are an important dental pathology, but there has been no research performed to examine the fracture resistance ex vivo.Objective: To evaluate the fracture resistance of equine cheek teeth and identify anatomical predictors that might influence fracture resistance in healthy teeth. It was further evaluated if the presence of a fissure caused a decrease in fracture resistance.Study design:Ex vivo experimental design.Methods: Individual cheek teeth were subjected to a compression load in a universal testing machine until fracture occurred. Testing was performed in two study groups. A first group of healthy cheek teeth was tested to examine anatomical predictors on fracture resistance. A second group comprised cheek teeth with occlusal fissures and an equal number of age- and size-matched fissure-free teeth as controls. The effect of possible predictors on fracture resistance was investigated by regression analysis.Results: In the first group, fracture resistance was significantly influenced by the location on the tooth where testing was performed in both maxillary (p Main limitations: This ex vivo model does not imitate the in vivo masticatory forces and lacks the shock-absorbing properties of the periodontal ligament.Conclusions: The methodology used in this study provides an ex vivo experimental set-up to test fracture resistance of equine cheek teeth enabling evidence-based research to examine the potentially weakening effects of tooth pathology and its treatments. Crown resistance to fracture differed along the occlusal surface of healthy equine cheek teeth, and the presence of fissures further decreased fracture resistance.</p
    corecore