171 research outputs found

    Penalty-based heuristic direct method for constrained global optimization

    Get PDF
    This paper is concerned with an extension of the heuristic DIRECT method, presented in[8], to solve nonlinear constrained global optimization (CGO) problems. Using a penalty strategy based on a penalty auxiliary function, the CGO problem is transformed into a bound constrained problem. We have analyzed the performance of the proposed algorithm using fixed values of the penalty parameter, and we may conclude that the algorithm competes favourably with other DIRECT-type algorithms in the literature.The authors wish to thank two anonymous referees for their comments and suggestions to improve the paper. This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM

    Understanding how the strategic similarities between energy companies influence the post-mergers and acquisitions performances

    Get PDF
    The energy sector has experienced rapid evolution in recent years, following the liberalization of the electricity and natural gas markets, driven by the European Union. These developments have led to a certain level of dynamism in Italy, particularly as concerns mergers and acquisitions (M&As) within the sector. This article examines the influence of strategic similarities between the target and bidder companies on their post-M&A performances. The model used involves a hierarchical regression relating the indexes of similarity between the merging companies, regarding their economic-financial management. The results reveal the influence of the strategic similarities and differences on the post-M&A performances of the companies, showing how the positive or negative effect depends on certain characteristics, such as their structure of share capital, business segments and size. The study evidences the strategic variables that should be considered in choosing the optimal target companies

    A Gray-Box Approach for Curriculum Learning

    Get PDF
    Curriculum learning is often employed in deep reinforcement learning to let the agent progress more quickly towards better behaviors. Numerical methods for curriculum learning in the literature provides only initial heuristic solutions, with little to no guarantee on their quality. We define a new gray-box function that, including a suitable scheduling problem, can be effectively used to reformulate the curriculum learning problem. We propose different efficient numerical methods to address this gray-box reformulation. Preliminary numerical results on a benchmark task in the curriculum learning literature show the viability of the proposed approach

    Geometric approach to Fletcher's ideal penalty function

    Get PDF
    Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe

    Filter-based DIRECT method for constrained global optimization

    Get PDF
    This paper presents a DIRECT-type method that uses a filter methodology to assure convergence to a feasible and optimal solution of nonsmooth and nonconvex constrained global optimization problems. The filter methodology aims to give priority to the selection of hyperrectangles with feasible center points, followed by those with infeasible and non-dominated center points and finally by those that have infeasible and dominated center points. The convergence properties of the algorithm are analyzed. Preliminary numerical experiments show that the proposed filter-based DIRECT algorithm gives competitive results when compared with other DIRECT-type methods.The authors would like to thank two anonymous referees and the Associate Editor for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundac¸ao para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization

    Get PDF
    This paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.The authors would like to thank the referees, the Associate Editor and the Editor-in-Chief for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Funda¸c˜ao para a Ciˆencia e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    On a smoothed penalty-based algorithm for global optimization

    Get PDF
    This paper presents a coercive smoothed penalty framework for nonsmooth and nonconvex constrained global optimization problems. The properties of the smoothed penalty function are derived. Convergence to an ε -global minimizer is proved. At each iteration k, the framework requires the ε(k) -global minimizer of a subproblem, where ε(k)→ε . We show that the subproblem may be solved by well-known stochastic metaheuristics, as well as by the artificial fish swarm (AFS) algorithm. In the limit, the AFS algorithm convergence to an ε(k) -global minimum of the real-valued smoothed penalty function is guaranteed with probability one, using the limiting behavior of Markov chains. In this context, we show that the transition probability of the Markov chain produced by the AFS algorithm, when generating a population where the best fitness is in the ε(k)-neighborhood of the global minimum, is one when this property holds in the current population, and is strictly bounded from zero when the property does not hold. Preliminary numerical experiments show that the presented penalty algorithm based on the coercive smoothed penalty gives very competitive results when compared with other penalty-based methods.The authors would like to thank two anonymous referees for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundac¸ao para a Ci ˜ encia e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Filter-based stochastic algorithm for global optimization

    Get PDF
    We propose the general Filter-based Stochastic Algorithm (FbSA) for the global optimization of nonconvex and nonsmooth constrained problems. Under certain conditions on the probability distributions that generate the sample points, almost sure convergence is proved. In order to optimize problems with computationally expensive black-box objective functions, we develop the FbSA-RBF algorithm based on the general FbSA and assisted by Radial Basis Function (RBF) surrogate models to approximate the objective function. At each iteration, the resulting algorithm constructs/updates a surrogate model of the objective function and generates trial points using a dynamic coordinate search strategy similar to the one used in the Dynamically Dimensioned Search method. To identify a promising best trial point, a non-dominance concept based on the values of the surrogate model and the constraint violation at the trial points is used. Theoretical results concerning the sufficient conditions for the almost surely convergence of the algorithm are presented. Preliminary numerical experiments show that the FbSA-RBF is competitive when compared with other known methods in the literature.The authors are grateful to the anonymous referees for their fruitful comments and suggestions.The first and second authors were partially supported by Brazilian Funds through CAPES andCNPq by Grants PDSE 99999.009400/2014-01 and 309303/2017-6. The research of the thirdand fourth authors were partially financed by Portuguese Funds through FCT (Fundação para Ciência e Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM and UIDB/00319/2020

    Exact Penalty Methods

    No full text
    . Exact penalty methods for the solution of constrained optimization problems are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. In the first part of this paper we recall some definitions concerning exactness properties of penalty functions, of barrier functions, of augmented Lagrangian functions, and discuss under which assumptions on the constrained problem these properties can be ensured. In the second part of the paper we consider algorithmic aspects of exact penalty methods; in particular we show that, by making use of continuously differentiable functions that possess exactness properties, it is possible to define implementable algorithms that are globally convergent with superlinear convergence rate towards KKT points of the constrained problem. 1 Introduction "It would be a major theoretic breakthrough in nonlinear programming if a simple continuously differentiable function could be exhibited with th..
    • …
    corecore