203 research outputs found
The rf control and detection system for PACO the parametric converter detector
In this technical note the rf control and detection system for a detector of
small harmonic displacements based on two coupled microwave cavities (PACO) is
presented. The basic idea underlying this detector is the principle of
parametric power conversion between two resonant modes of the system,
stimulated by the (small) harmonic modulation of one system parameter. In this
experiment we change the cavity length applying an harmonic voltage to a
piezo-electric crystal. The system can achieve a great sensitivity to small
harmonic displacements and can be an interesting candidate for the detection of
small, mechanically coupled, interactions (e.g. high frequency gravitational
waves).Comment: 13 pages, 4 postscript figure
A detector of small harmonic displacements based on two coupled microwave cavities
The design and test of a detector of small harmonic displacements is
presented. The detector is based on the principle of the parametric conversion
of power between the resonant modes of two superconducting coupled microwave
cavities. The work is based on the original ideas of Bernard, Pegoraro, Picasso
and Radicati, who, in 1978, suggested that superconducting coupled cavities
could be used as sensitive detectors of gravitational waves, and on the work of
Reece, Reiner and Melissinos, who, {in 1984}, built a detector of this kind.
They showed that an harmonic modulation of the cavity length l produced an
energy transfer between two modes of the cavity, provided that the frequency of
the modulation was equal to the frequency difference of the two modes. They
achieved a sensitivity to fractional deformations of dl/l~10^{-17} Hz^{-1/2}.
We repeated the Reece, Reiner and Melissinos experiment, and with an improved
experimental configuration and better cavity quality, increased the sensitivity
to dl/l~10^{-20} Hz^{-1/2}. In this paper the basic principles of the device
are discussed and the experimental technique is explained in detail. Possible
future developments, aiming at gravitational waves detection, are also
outlined.Comment: 28 pages, 12 eps figures, ReVteX. \tightenlines command added to
reduce number of pages. The following article has been accepted by Review of
Scientific Instruments. After it is published, it will be found at
http://link.aip.org/link/?rs
Parametric gravity wave detector
Since 1978 superconducting coupled cavities have been proposed as a sensitive
detector of gravitational waves. The interaction of the gravitational wave with
the cavity walls, and the esulting motion, induces the transition of some
energy from an initially excited cavity mode to an empty one. The energy
transfer is maximum when the frequency of the wave is equal to the frequency
difference of the two cavity modes. In 1984 Reece, Reiner and Melissinos built
a detector of the type proposed, and used it as a transducer of harmonic
mechanical motion, achieving a sensitivity to fractional deformations of the
order dx/x ~ 10^(-18). In this paper the working principles of the detector are
discussed and the last experimental results summarized. New ideas for the
development of a realistic gravitational waves detector are considered; the
outline of a possible detector design and its expected sensitivity are also
shown.Comment: 9 pages, 6 figures. Talk given at the Workshop on Electromagnetic
Probes of Fundamentals Physics, Erice (Italy), October 200
A detector of gravitational waves based on coupled microwave cavities
Since 1978 superconducting coupled cavities have been proposed as sensitive
detector of gravitational waves. The interaction of the gravitational wave with
the cavity walls, and the resulting motion, induces the transition of some
electromagnetic energy from an initially excited cavity mode to an empty one.
The energy transfer is maximum when the frequency of the wave is equal to the
frequency difference of the two cavity modes. In this paper the basic
principles of the detector are discussed. The interaction of a gravitational
wave with the cavity walls is studied in the proper reference frame of the
detector, and the coupling between two electromagnetic normal modes induced by
the wall motion is analyzed in detail. Noise sources are also considered; in
particular the noise coming from the brownian motion of the cavity walls is
analyzed. Some ideas for the developement of a realistic detector of
gravitational waves are discussed; the outline of a possible detector design
and its expected sensitivity are also shown.Comment: 29 pages, 12 eps figures. Typeset by REVTe
Two Coupled Superconducting Cavities as a Gravitational Wave Detector: First Experimental Results
First experimental results of a feasibility study of a gravitational wave
detector based on two coupled superconducting cavities are presented. Basic
physical principles underlying the detector behaviour and sensitivity limits
are discussed. The detector layout is described in detail and its rf properties
are showed. The limit sensitivity to small harmonic displacements at the
detection frequency (around 1 MHz) is showed. The system performance as a
potential g.w. detector is discussed and future developments are foreseen.Comment: 7 pages, 3 figures. Presented at the 9th Workshop on RF
Superconductivity, November 1-5, 1999, Santa Fe, New Mexico, US
Some Mathematical and Numerical Aspects inAluminum Production
In this paper, we present a mathematical modeling of some magnetohydrodynamic effects arising in an aluminum production cell as well as its numerical approximation by a finite element method. We put the emphasis on the magnetic effects which live in the whole three dimensional space and which are solved numerically with a domain decomposition metho
Don't forget the jumper's knee in the young sportsman: evaluation of patellar tendinopathy with a high frequency ultrasound probe.
8Patellar tendinopathy, or Jumper's knee, is a painful knee condition caused by inflammation of the patella tendon. This condition is most frequently observed in subjects who play sports that require repetitive regular jumping. Jumper's knee is frequently misdiagnosed as a minor injury and many athletes, like our patient, keep on training and competing and either tend to ignore the injury or attempt to treat it themselves. However, jumper's knee is a serious condition that requires a correct and timely diagnosis, which often necessitates ultrasound investigation in order to start the most appropriate treatment.openopenRuaro B; Cutolo M; Alessandri E; Zaottini F; Picasso R; Pistoia F; Ferrari G; Martinoli C.Ruaro, B; Cutolo, M; Alessandri, E; Zaottini, F; Picasso, R; Pistoia, F; Ferrari, G; Martinoli, C
Microwave apparatus for gravitational waves observation
In this report the theoretical and experimental activities for the
development of superconducting microwave cavities for the detection of
gravitational waves are presented.Comment: 42 pages, 28 figure
Determining Ratios of WIMP-Nucleon Cross Sections from Direct Dark Matter Detection Data
Weakly Interacting Massive Particles (WIMPs) are one of the leading
candidates for Dark Matter. So far the usual procedure for constraining the
WIMP-nucleon cross sections in direct Dark Matter detection experiments have
been to fit the predicted event rate based on some model(s) of the Galactic
halo and of WIMPs to experimental data. One has to assume whether the
spin-independent (SI) or the spin-dependent (SD) WIMP-nucleus interaction
dominates, and results of such data analyses are also expressed as functions of
the as yet unknown WIMP mass. In this article, I introduce methods for
extracting information on the WIMP-nucleon cross sections by considering a
general combination of the SI and SD interactions. Neither prior knowledge
about the local density and the velocity distribution of halo WIMPs nor about
their mass is needed. Assuming that an exponential-like shape of the recoil
spectrum is confirmed from experimental data, the required information are only
the measured recoil energies (in low energy ranges) and the number of events in
the first energy bin from two or more experiments.Comment: 33 pages, 20 eps figures; v2: typos fixed, references added and
updated, revised version for publicatio
- …