652 research outputs found

    Design of a reinforced concrete Wave Energy Converter in extreme wave conditions

    Get PDF
    In the last decades, the growth of renewable energies showed to be more cost competitive, although traditional fossil fuels are still more affordable. Among the renewable energies, one of the most promising is wave energy, thanks to the high energy density stored in the waves. However, this precious resource requires further development, in particular to identify convenient and reliable production processes for conversion devices, known as Wave Energy Converters (WECs), and a view toward future changes and improvements of the existing prototypes. An interesting method to reduce the technological costs of energy and its environmental footprint could be found in the use of concrete structures, as opposed to traditional steel ones. This paper investigates the use of reinforced concrete for PeWEC, a floating wave energy converter, which converts wave energy into electrical energy thanks to its pitch motion. A preliminary design is carried out; pressure and mooring forces are evaluated and their structural effects are calculated by means of a finite element analysis. The design of reinforcements in a concrete shell is then reviewed. The general procedure is applicable to the case of a shell subjected to both bending and membrane stresses

    Correction of multiple canine impactions by mixed straightwire and cantilever mechanics: a case report.

    Get PDF
    Background. This case report describes the orthodontic treatment of a woman, aged 17 years, with a permanent dentition, brachyfacial typology, Angle Class I, with full impaction of two canines (13,33), and a severe ectopy of the maxillary left canine. Her main compliant was the position of the ectopic teeth. Methods. Straightwire fixed appliances, together with cantilever mechanics, were used to correct the impaired occlusion and to obtain an ideal torque control. Results and Conclusion. The treatment objectives were achieved in 26 months of treatment. The impactions were fully corrected with an optimal torque. The cantilever mechanics succeeded in obtaining tooth repositioning in a short lapse of time. After treatment, the dental alignment was stable

    Wave energy converter mooring system: Available solvers and model validation

    Get PDF
    Talking about mooring systems for Wave Energy Converter shall be taken into account not only the station-keeping problem but also the influence of the mooring on the device motion. In literature several software for mooring modeling could be investigated, and among these software MoorDyn should be considered for its versatility. By the way, each model should be validated against experimental data to test its reliability hence, the aim of these paper is to follow the analysis which starts from an overview of the mooring system models and software and which ends with a model validation which has been performed against the experimental data obtained during Naples experimental campaign. Device kinematic has been recorded through a data acquisition system equipped in the scaled wave energy converter, and it has been used as input of the numerical simulation. The force recorded with a load cells system, connected with the mooring lines and the device, has been compared with the numerical one, derived from MoorDyn, and they have shown a marked overlapping that witnesses the validation

    A Reconfigurable Gripper for Robotic Autonomous Depalletizing in Supermarket Logistics

    Get PDF
    Automatic depalletizing is becoming a practice widely applied in warehouses to automatize and speed-up logistics. On the other hand, the necessity to adapt the preexisting logistic lines to a custom automatic system can be a limit for the application of robotic solutions into smaller facilities like supermarkets. In this work, we tackle this issue by proposing a flexible and adaptive gripper for robotic depalletizing. The gripper is designed to be assembled on the end-tip of an industrial robotic arm. A novel patent-pending mechanism allows grasping boxes and products from both the upper and the lateral side enabling the depalletizing of boxes with complex shape. Moreover, the gripper is reconfigurable with five actuated degrees of freedom, that are automatically controlled using the embedded sensors to adapt grasping to different shapes and weights

    Data-based control synthesis and performance assessment for moored wave energy conversion systems: the PeWEC case

    Get PDF
    With a model-based control strategy, the effectiveness of the associated control action depends on the availability of a representative control-oriented model. In the case of floating offshore wave energy converters (WECs), the device response depends upon the interaction between mooring system, any mechanical parts, and the hydrodynamics of the floating body. This study proposes an approach to synthesise WEC controllers under the effect of mooring forces building a representative data-based linear model able to include any relevant dynamics. Moreover, the procedure is tested on the moored pendulum wave energy converter (PeWEC) by means of a high-fidelity mooring solver, OrcaFlex (OF). In particular, the control action is computed with and without knowledge of the mooring influence, in order to analyse and elucidate the effect of the station-keeping system on the harvested energy. The performance assessment of the device is achieved by evaluating device power on the resource scatter characterising Pantelleria, Italy. The results show the relevance of the mooring dynamics on the device response and final set of control parameters and, hence, a significant influence of the station-keeping system on control synthesis and extracted mechanical power

    RGB-D Recognition and Localization of Cases for Robotic Depalletizing in Supermarkets

    Get PDF
    Integrating a robotic system into the depalletizing process of a supermarket demands a high level of autonomy, based on strong perceptive capabilities. This letter presents a system for detection, recognition, and localization of heterogeneous cases in a depalletizing robotic cell, using a single RGB-D camera. Such a system integrates apriori information on the content of the pallet with data from the RGB-D camera, exploiting a sequence of 2D and 3D model-based computer-vision algorithms. The effectiveness of the proposed methodology is assessed in an experiment where multiple cases and pallet configurations are considered. Finally, a complete depalletizing process is shown

    A Flexible Robotic Depalletizing System for Supermarket Logistics

    Get PDF
    Depalletizing robotic systems are commonly deployed to automatize and speed-up parts of logistic processes. Despite this, the necessity to adapt the preexisting logistic processes to the automatic systems often impairs the application of such robotic solutions to small business realities like supermarkets. In this work we propose a robotic depalletizing system designed to be easily integrated into supermarket logistic processes. The system has to schedule, monitor and adapt the depalletizing process considering both on-line perceptual information given by non-invasive sensors and constraints provided by the high-level management system or by a supervising user. We describe the overall system discussing two case studies in the context of a supermarket logistic process. We show how the proposed system can manage multiple depalletizing strategies and multiple logistic requests

    Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems

    Get PDF
    In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner

    Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI

    Get PDF
    New amphiphilic molecules containing a bioactive peptide or a claw moiety have been prepared in order to obtain mixed micelles as target-specific contrast agents in magnetic resonance imaging. The first molecule, C18H37CONH(AdOO)2-G-CCK8 (C18CCK8), contains a C18 hydrophobic moiety bound to the C-terminal cholecystokinin octapeptide amide (CCK 26-33 or CCK8). The second amphiphilic compound, C18H37CONHLys(DTPAGlu)CONH2 (C18DTPAGlu) or its gadolinium complex, (C18DTPAGlu- (Gd)), contains the same C18 hydrophobic moiety bound, through a lysine residue, to the DTPAGlu chelating agent. The mixed aggregates as well as the pure C18DTPAGlu aggregate, in the presence and absence of Gd, have been fully characterized by surface tension measurements, FT-PGSE-NMR, fluorescence quenching, and small-angle neutron scattering measurements. The structural characterization of the mixed aggregates C18DTPAGlu(Gd)-C18CCK8 indicates a spherical arrangement of the micelles with an external shell of 21 Å and an inner core of 20 Å. Both the DTPAGlu(Gd) complexes and the CCK8 peptides point toward the external surface. The measured values for relaxivity in saline medium at 20 MHz proton Larmor frequency and 25 °C are 18.7 mM-1 s-1. These values show a large enhancement in comparison with the isolated DTPAGlu(Gd) complex
    • …
    corecore