353 research outputs found

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Conformally invariant wave-equations and massless fields in de Sitter spacetime

    Full text link
    Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in the present paper. Solutions of their wave equations and the related two-point functions, in the ambient space notation, have been calculated. The ``Hilbert'' space structure and the field operator, in terms of coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based on the analyticity in the complexified pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits of these functions are analyzed. The relation between the ambient space notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde

    Resonant enhanced diffusion in time dependent flow

    Full text link
    Explicit examples of scalar enhanced diffusion due to resonances between different transport mechanisms are presented. Their signature is provided by the sharp and narrow peaks observed in the effective diffusivity coefficients and, in the absence of molecular diffusion, by anomalous transport. For the time-dependent flow considered here, resonances arise between their oscillations in time and either molecular diffusion or a mean flow. The effective diffusivities are calculated using multiscale techniques.Comment: 18 latex pages, 11 figure

    Manifestation of the Arnol'd Diffusion in Quantum Systems

    Full text link
    We study an analog of the classical Arnol'd diffusion in a quantum system of two coupled non-linear oscillators one of which is governed by an external periodic force with two frequencies. In the classical model this very weak diffusion happens in a narrow stochastic layer along the coupling resonance, and leads to an increase of total energy of the system. We show that the quantum dynamics of wave packets mimics, up to some extent, global properties of the classical Arnol'd diffusion. This specific diffusion represents a new type of quantum dynamics, and may be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 4 pages including 7 ps-figures, corrected forma

    Diffusive Ionization of Relativistic Hydrogen-Like Atom

    Full text link
    Stochastic ionization of highly excited relativistic hydrogenlike atom in the monochromatic field is investigated. A theoretical analisis of chaotic dynamics of the relativistic electron based on Chirikov criterion is given for the cases of one- and three-dimensional atoms. Critical value of the external field is evaluated analitically. The diffusion coefficient and ionization time are calculated.Comment: 13 pages, latex, no figures, submitted to PR

    Stochastic Quantization of Scalar Fields in de Sitter Spacetime

    Full text link
    We consider the stochastic quantization method for scalar fields defined in a curved manifold. The two-point function associated to a massive self-interacting scalar field is evaluated, up to the first order level in the coupling constant λ\lambda, for the case of de Sitter Euclidean metric. Its value for the asymptotic limit of the Markov parameter τ\tau\to\infty is exhibited. We discuss in detail the covariant stochastic regularization to render the one-loop two-point function finite in the de Sitter Euclidean metric

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Nonminimal isotropic cosmological model with Yang-Mills and Higgs fields

    Full text link
    We establish a nonminimal Einstein-Yang-Mills-Higgs model, which contains six coupling parameters. First three parameters relate to the nonminimal coupling of non-Abelian gauge field and gravity field, two parameters describe the so-called derivative nonminimal coupling of scalar multiplet with gravity field, and the sixth parameter introduces the standard coupling of scalar field with Ricci scalar. The formulated six-parameter nonminimal Einstein-Yang-Mills-Higgs model is applied to cosmology. We show that there exists a unique exact cosmological solution of the de Sitter type for a special choice of the coupling parameters. The nonminimally extended Yang-Mills and Higgs equations are satisfied for arbitrary gauge and scalar fields, when the coupling parameters are specifically related to the curvature constant of the isotropic spacetime. Basing on this special exact solution we discuss the problem of a hidden anisotropy of the Yang-Mills field, and give an explicit example, when the nonminimal coupling effectively screens the anisotropy induced by the Yang-Mills field and thus restores the isotropy of the model.Comment: 15 pages, revised version accepted to Int. J. Mod. Phys. D, typos correcte

    Passive sorting of asteroid material using solar radiation pressure

    Get PDF
    Understanding dust dynamics in asteroid environments is key for future science missions to asteroids and, in the long-term, also for asteroid exploitation. This paper proposes a novel way of manipulating asteroid material by means of solar radiation pressure (SRP). We envisage a method for passively sorting material as a function of its grain size where SRP is used as a passive in-situ ‘mass spec-trometer’. The analysis shows that this novel method allows an effective sorting of regolith material. This has immediate applications for sample return, and in-situ resource utilisation to separate different regolith particle sizes

    Unruh response functions for scalar fields in de Sitter space

    Full text link
    We calculate the response functions of a freely falling Unruh detector in de Sitter space coupled to scalar fields of different coupling to the curvature, including the minimally coupled massless case. Although the responses differ strongly in the infrared as a consequence of the amplification of superhorizon modes, the energy levels of the detector are thermally populated.Comment: 16 pages, 1 figure, accepted for publication by Classical and Quantum Gravit
    corecore