21 research outputs found

    A study of the selective hydroconversion of biocarboxylic acids to bioalcohols over novel indium-nickel/zeolite catalysts using octanoic acid as model reactant

    Get PDF
    Octanoic acid (OA) was hydrotreated in a flow-through reactor at 21 bar total pressure and 240-340 °C over supported metal catalysts prepared from Ni-zeolites (A, X, P) by indium modification. The Ni-zeolites were activated first in H2 flow at 21 bar and 450 °C. While a fraction of the nickel got fully reduced, the zeolite structure became partially destructed. However, some nickel cations remained unreduced, therefore a large fraction of the crystalline zeolite structure was retained. The indium modification of the reduced Ni-zeolites generated bimetallic NiIn/Ni,H-zeolite catalysts having higher stability, hydroconversion activity, octanol selectivity, and lower hydrodecarbonylation activity than the parent partially destructed Ni-zeolite and the Adkins-type catalysts, commercially applied for the conversion of fatty acids to alcohols. © 2013 Akadémiai Kiadó, Budapest, Hungary

    A Study of Applicability of Nonlinear Frequency Response Method for Investigation of Gas Adsorption Based on Numerical Experiments

    No full text
    A study of the applicability of the Nonlinear Frequency Response (NFR) approach for investigation of equilibrium and kinetics of gas adsorption, based on numerical simulations, is presented. Pressure responses of a batch adsorber are simulated, using literature data, for a sinusoidal volume change with different input amplitudes, up to 10%, around several steady-state points. The procedure for application of the NFR approach is demonstrated step-by-step, using the simulated pressure responses. As a result, quasi-experimental first- and second-order FRFs are estimated and used for estimation of the equilibrium and kinetic parameters of the adsorption system. The estimated parameters agree well with the original ones used for simulations. Influence of noise on the accuracy of the estimated FRFs and model parameters is also analyzed. The results of this study show that the application of the NFR approach for investigation of equilibrium and kinetics of gas adsorption in a batch system is feasible. Furthermore, valuable information regarding the design of the NFR equipment and experiments is gained
    corecore