643 research outputs found

    Microtubule-regulating kinesins

    Get PDF

    Evidence that Myb-related CDC5 proteins are required for pre-mRNA splicing

    Get PDF
    The conserved CDC5 family of Myb-related proteins performs an essential function in cell cycle control at G(2)/M. Although c-Myb and many Myb-related proteins act as transcription factors, herein, we implicate CDC5 proteins in pre-mRNA splicing. Mammalian CDC5 colocalizes with pre-mRNA splicing factors in the nuclei of mammalian cells, associates with core components of the splicing machinery in nuclear extracts, and interacts with the spliceosome throughout the splicing reaction in vitro. Furthermore, genetic depletion of the homolog of CDC5 in Saccharomyces cerevisiae, CEF1. blocks the first step of pre-mRNA processing in vivo. These data provide evidence that eukaryotic cells require CDC5 proteins for pre-mRNA splicing

    Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19

    Get PDF
    Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold

    A Natural Framework for Solar and 17 keV Neutrinos

    Full text link
    Motivated by recent experimental claims for the existence of a 17 keV neutrino and by the solar neutrino problem, we construct a class of models which contain in their low-energy spectrum a single light sterile neutrino and one or more Nambu-Goldstone bosons. In these models the required pattern of breaking of lepton-number symmetry takes place near the electroweak scale and all mass heirarchies are technically natural. The models are compatible with all cosmological and astrophysical constraints, and can solve the solar neutrino problem via either the MSW effect or vacuum oscillations. The deficit in atmospheric muon neutrinos seen in the Kamiokande and IMB detectors can also be explained in these models.Comment: 23 page

    Experimental study of pedestrian flow through a bottleneck

    Get PDF
    In this work the results of a bottleneck experiment with pedestrians are presented in the form of total times, fluxes, specific fluxes, and time gaps. A main aim was to find the dependence of these values from the bottleneck width. The results show a linear decline of the specific flux with increasing width as long as only one person at a time can pass, and a constant value for larger bottleneck widths. Differences between small (one person at a time) and wide bottlenecks (two persons at a time) were also found in the distribution of time gaps.Comment: accepted for publication in J. Stat. Mec

    Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD) patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP), lectin pathway (LP) and alternative pathway (AP) using a novel method and consequently to elucidate the rates of deficiencies among HD patients.</p> <p>Methods</p> <p>In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa<sup>®</sup>-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined.</p> <p>Results</p> <p>All three functional complement activities were significantly higher in the HD patients than in the control group (P < 0.01 for all cases). After identifying candidates in both groups with complement deficiencies using the Wielisa<sup>®</sup>-kit, 16 sera (8.8%) with mannose-binding lectin (MBL) deficiency, 1 serum (0.4%) with C4 deficiency, 1 serum (0.4%) with C9 deficiency, and 1 serum (0.4%) with B deficiency were observed in the HD group, and 18 sera (8.8%) with MBL deficiency and 1 serum (0.5%) with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients.</p> <p>Conclusion</p> <p>This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.</p

    Autoimmune hemolytic anemia occurred prior to evident nephropathy in a patient with chronic hepatitis C virus infection: case report

    Get PDF
    BACKGROUND: Renal involvement in patients with chronic hepatitis C virus infection has been suggested to be due to a variety of immunological processes. However, the precise mechanism by which the kidneys are damaged in these patients is still unclear. CASE PRESENTATION: A 66 year old man presented with the sudden onset of autoimmune hemolytic anemia. Concomitant with a worsening of hemolysis, his initially mild proteinuria and hemoglobinuria progressed. On admission, laboratory tests revealed that he was positive for hepatitis C virus in his blood, though his liver function tests were all normal. The patient displayed cryoglobulinemia and hypocomplementemia with cold activation, and exhibited a biological false positive of syphilic test. Renal biopsy specimens showed signs of immune complex type nephropathy with hemosiderin deposition in the tubular epithelial cells. CONCLUSIONS: The renal histological findings in this case are consistent with the deposition of immune complexes and hemolytic products, which might have occurred as a result of the patient's underlying autoimmune imbalance, autoimmune hemolytic anemia, and chronic hepatitis C virus infection

    Planck scale effects in neutrino physics

    Full text link
    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex, IC/92/196, SISSA-140/92/EP, LMU-09/9

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates
    corecore