293 research outputs found

    Resonance at the Rabi frequency in a superconducting flux qubit

    Full text link
    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.Comment: This paper is the extended version of the talk given by one of the authors at the Conference On Nuclei And Mesoscopic Physics, 5-9 May 2014, Michigan State University, East Lansing, US

    Signal amplification in a qubit-resonator system

    Get PDF
    We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit's energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.Comment: 7 pages, 8 figure

    Weak continuous monitoring of a flux qubit using coplanar waveguide resonator

    Full text link
    We study a flux qubit in a coplanar waveguide resonator by measuring transmission through the system. In our system with the flux qubit decoupled galvanically from the resonator, the intermediate coupling regime is achieved. In this regime dispersive readout is possible with weak backaction on the qubit. The detailed theoretical analysis and simulations give a good agreement with the experimental data and allow to make the qubit characterization.Comment: 4 pages, 3 figures, to be published in Phys. Rev.
    corecore