1,557 research outputs found
Multiple-relaxation-time Finsler-Lagrange dynamics in a compressed Langmuir monolayer
In this paper an information geometric approach has been proposed to describe
the two-dimensional (2d) phase transition of the first order in a monomolecular
layer (monolayer) of amphiphilic molecules deposited on air/water interface.
The structurization of the monolayer was simulated as an entropy evolution of a
statistical set of microscopic states with a large number of relaxation times.
The electrocapillary forces are considered as information constraints on the
statistical manifold. The solution curves of Euler-Lagrange equations and the
Jacobi field equations point out contracting pencils of geodesic trajectories
on the statistical manifold, which may change into spreading ones, and
converse. It was shown that the information geometrodynamics of the first-order
phase transition in the Langmuir monolayer finds an appropriate realization
within the Finsler-Lagrange framework
Jet theoretical Yang-Mills energy in the geometric dynamics of 2D-monolayer
Langmuir-Blodgett films (LB-films) consist from few LB-monolayers which are
high structured nanomaterials that are very promising materials for
applications. We use a geometrical approach to describe structurization into
LB-monolayers. Consequently, we develop on the 1-jet space J^1([0,\infty),R^2)
the single-time Lagrange geometry (in the sense of distinguished (d-)
connection, d-torsions and an abstract anisotropic electromagnetic-like
d-field) for the Lagrangian governing the 2D-motion of a particle of monolayer.
One assumed that an expansion near singular points for the constructed
geometrical Lagrangian theory describe phase transitions to LB-monolayer.
Trajectories of particles in a field of the electrocapillarity forces of
monolayer have been calculated in a resonant approximation utilizing some
Jacobi equations. A jet geometrical Yang-Mills energy is introduced and some
physical interpretations are given.Comment: 12 pages; A version of this paper was presented at VIII-th
International Conference "Finsler Extensions of Relativity Theory", June 25 -
July 1, 2012, Moscow-Fryazino, Russi
Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems
Computer modeling of multicellular systems has been a valuable tool for
interpreting and guiding in vitro experiments relevant to embryonic
morphogenesis, tumor growth, angiogenesis and, lately, structure formation
following the printing of cell aggregates as bioink particles. Computer
simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in
explaining and predicting the resulting stationary structures (corresponding to
the lowest adhesion energy state). Here we present two alternatives to the MMC
approach for modeling cellular motion and self-assembly: (1) a kinetic Monte
Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC,
both KMC and CPD methods are capable of simulating the dynamics of the cellular
system in real time. In the KMC approach a transition rate is associated with
possible rearrangements of the cellular system, and the corresponding time
evolution is expressed in terms of these rates. In the CPD approach cells are
modeled as interacting cellular particles (CPs) and the time evolution of the
multicellular system is determined by integrating the equations of motion of
all CPs. The KMC and CPD methods are tested and compared by simulating two
experimentally well known phenomena: (1) cell-sorting within an aggregate
formed by two types of cells with different adhesivities, and (2) fusion of two
spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev
Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density
Exsolution has been intensively studied in the fields of energy conversion and storage as a method for the preparation of catalytically active and durable metal nanoparticles. Under typical conditions, however, only a limited number of nanoparticles can be exsolved from the host oxides. Herein, we report the preparation of catalytic nanoparticles by selective exsolution through topotactic ion exchange, where deposited Fe guest cations can be exchanged with Co host cations in PrBaMn1.7Co0.3O5+delta. Interestingly, this phenomenon spontaneously yields the host PrBaMn1.7Fe0.3O5+delta, liberating all the Co cations from the host owing to the favorable incorporation energy of Fe into the lattice of the parent host (Delta E-incorporation = -0.41 eV) and the cation exchange energy (Delta E-exchange = -0.34 eV). Remarkably, the increase in the number of exsolved nanoparticles leads to their improved catalytic activity as a solid oxide fuel cell electrode and in the dry reforming of methane
New type of microengine using internal combustion of hydrogen and oxygen
Microsystems become part of everyday life but their application is restricted
by lack of strong and fast motors (actuators) converting energy into motion.
For example, widespread internal combustion engines cannot be scaled down
because combustion reactions are quenched in a small space. Here we present an
actuator with the dimensions 100x100x5 um^3 that is using internal combustion
of hydrogen and oxygen as part of its working cycle. Water electrolysis driven
by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of
100-400 us in a chamber closed by a flexible membrane. When the pulses are
switched off this pressure is released even faster allowing production of
mechanical work in short cycles. We provide arguments that this unexpectedly
fast pressure decrease is due to spontaneous combustion of the gases in the
chamber. This actuator is the first step to truly microscopic combustion
engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports
An expression atlas of chemosensory ionotropic glutamate receptors identifies a molecular basis of carbonation detection
Taste perception is thought to involve the encoding of appetitive and aversive chemical cues in food through a limited number of sensory pathways. Through expression analysis of the complete repertoire of Drosophila Ionotropic Receptors (IRs), a sensory subfamily of ionotropic glutamate receptors, we reveal that the majority of IRs is expressed in diverse peripheral neuron populations across gustatory organs in both larvae and adults, implying numerous roles in taste-evoked behaviours. We characterise Ir56d, which labels two anatomically-distinct classes of neurons in the proboscis: one represents a subset of sugar- and fatty acid-sensing neurons, while the other responds to carbonated solutions and fatty acids. Mutational analysis shows that IR56d, together with the broadly-expressed co-receptors IR25a and IR76b, is essential for physiological activation by carbonation and fatty acids, but not sucrose. We further demonstrate that carbonation is behaviourally attractive to flies (in an IR56d-dependent manner), but in a distinct way to other appetitive stimuli. Our work provides a valuable toolkit for investigating the taste functions of IRs, defines a molecular basis of carbonation sensing, and illustrates how the gustatory system uses combinatorial expression of sensory receptors in distinct neuron types to coordinate behaviour
Induced Parity-Breaking Term at Finite Chemical Potential and Temparature
We exactly calculated the parity-odd term of the effective action induced by
the fermions in 2+1 dimensions at finite chemical potential and finite
temperature. It shows that gauge invariance is still respected. A more gerneral
class of background configurations is considered. The knowledge of the reduced
1+1 determinant is required in order to draw exact conclusions about the gauge
invariance of the parity-odd term in this latter case.Comment: 8 pages, LATEX, no figure
Spectrum of the Relativistic Particles in Various Potentials
We extend the notion of Dirac oscillator in two dimensions, to construct a
set of potentials. These potentials becomes exactly and quasi-exactly solvable
potentials of non-relativistic quantum mechanics when they are transformed into
a Schr\"{o}dinger-like equation. For the exactly solvable potentials,
eigenvalues are calculated and eigenfunctions are given by confluent
hypergeometric functions. It is shown that, our formulation also leads to the
study of those potentials in the framework of the supersymmetric quantum
mechanics
- …
