536 research outputs found

    Inverse approach to Einstein's equations for fluids with vanishing anisotropic stress tensor

    Full text link
    We expand previous work on an inverse approach to Einstein Field Equations where we include fluids with energy flux and consider the vanishing of the anisotropic stress tensor. We consider the approach using warped product spacetimes of class B1B_1. Although restricted, these spacetimes include many exact solutions of interest to compact object studies and to cosmological models studies. The question explored here is as follows: given a spacetime metric, what fluid flow (timelike congruence), if any, could generate the spacetime via Einstein's equations. We calculate the flow from the condition of a vanishing anisotropic stress tensor and give results in terms of the metric functions in the three canonical types of coordinates. A condition for perfect fluid sources is also provided. The framework developed is algorithmic and suited for the study and validation of exact solutions using computer algebra systems. The framework can be applied to solutions in comoving and non-comoving frames of reference, and examples in different types of coordinates are worked out.Comment: 15 pages, matches version to appear in Phys.Rev.

    A Doppler theory of quasars

    Get PDF
    We examine a Doppler theory of quasars in which it is assumed that a fraction of the total population of quasars are fired from centres of explosion with moderate cosmological redshifts. It is argued that the substantial part of the redshift of a typical high redshift quasar could be of Doppler origin. If Hoyle's recent hypothesis that quasars emit the bulk of their radiation in a narrow backward cone is given a quantitative form, it is shown that the kinematic and emission parameters of this model can explain the observed features of the four aligned triplets of quasars discovered by Arp and Hazard (1980) and by Saslaw (personal communication). The model predicts a small but nonzero fraction of quasars with blueshifts. Further observational tests of the model are discussed

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    Microwave properties of DyBa_2Cu_3O_(7-x) monodomains and related compounds in magnetic fields

    Full text link
    We present a microwave characterization of a DyBa2_{2}Cu3_{3}O7x_{7-x} single domain, grown by the top-seeded melt-textured technique. We report the (a,b) plane field-induced surface resistance, ΔRs(H)\Delta R_s(H), at 48.3 GHz, measured by means of a cylindrical metal cavity in the end-wall-replacement configuration. Changes in the cavity quality factor Q against the applied magnetic field yield ΔRs(H)\Delta R_s(H) at fixed temperatures. The temperature range [70 K ; T_c] was explored. The magnetic field μ0H<\mu_0 H < 0.8 T was applied along the c axis. The field dependence of ΔRs(H)\Delta R_s(H) does not exhibit the steep, step-like increase at low fields typical of weak-links. This result indicates the single-domain character of the sample under investigation. ΔRs(H)\Delta R_s(H) exhibits a nearly square-root dependence on H, as expected for fluxon motion. From the analysis of the data in terms of motion of Abrikosov vortices we estimate the temperature dependences of the London penetration depth λ\lambda and the vortex viscosity η\eta, and their zero-temperature values λ(0)=\lambda(0)=165 nm and η(0)=\eta(0)= 3 107^{-7} Nsm2^{-2}, which are found in excellent agreement with reported data in YBa2_{2}Cu3_{3}O7x_{7-x} single crystals. Comparison of microwave properties with those of related samples indicate the need for reporting data as a function of T/T_c in order to obtain universal laws.Comment: 6 pages, 4 figures, LaTeX, submitted to Journal of Applied Physic

    Is the present expansion of the universe really accelerating?

    Get PDF
    The current observations are usually explained by an accelerating expansion of the present universe. However, with the present quality of the supernovae Ia data, the allowed parameter space is wide enough to accommodate the decelerating models as well. This is shown by considering a particular example of the dark energy equation-of-state wϕpϕ/ρϕ=1/3w_\phi\equiv p_\phi/\rho_\phi=-1/3, which is equivalent to modifying the \emph{geometrical curvature} index kk of the standard cosmology by shifting it to (kα)(k-\alpha) where α\alpha is a constant. The resulting decelerating model is consistent with the recent CMB observations made by WMAP, as well as, with the high redshift supernovae Ia data including SN 1997ff at z=1.755z= 1.755. It is also consistent with the newly discovered supernovae SN 2002dc at z=0.475z=0.475 and SN 2002dd at z=0.95z=0.95 which have a general tendency to improve the fit.Comment: Replaced with the accepted version to appear in MNRA

    Carrier Transport in Magnesium Diboride: Role of Nano-inclusions

    Full text link
    Anisotropic-gap and two-band effects smear out the superconducting transition (Tc) in literature reported thermal conductivity of MgB2, where large electronic contributions also suppress anomaly-manifestation in their negligible phononic-parts. Present thermal transport results on scarcely explored specimens featuring nano-inclusions exhibit a small but clear Tc-signature, traced to relatively appreciable phononic conduction, and its dominant electronic-scattering. The self-formed MgO as extended defects strongly scatter the charge carriers and minutely the phonons with their longer-mean-free-path near Tc. Conversely, near room temperature, the shorter-dominant-wavelength phonon's transport is hugely affected by these nanoparticles, undergoing ballistic to diffusive crossover and eventually entering the Ioffe-Regel mobility threshold regime.Comment: 14 pages, 4 figures, 28 reference

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.

    Get PDF
    Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes
    corecore