1,437 research outputs found
Detailed gravity anomalies from GEOS-3 satellite altimetry data
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data
Applications of satellite and marine geodesy to operations in the ocean environment
The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports
bdbms -- A Database Management System for Biological Data
Biologists are increasingly using databases for storing and managing their
data. Biological databases typically consist of a mixture of raw data,
metadata, sequences, annotations, and related data obtained from various
sources. Current database technology lacks several functionalities that are
needed by biological databases. In this paper, we introduce bdbms, an
extensible prototype database management system for supporting biological data.
bdbms extends the functionalities of current DBMSs to include: (1) Annotation
and provenance management including storage, indexing, manipulation, and
querying of annotation and provenance as first class objects in bdbms, (2)
Local dependency tracking to track the dependencies and derivations among data
items, (3) Update authorization to support data curation via content-based
authorization, in contrast to identity-based authorization, and (4) New access
methods and their supporting operators that support pattern matching on various
types of compressed biological data types. This paper presents the design of
bdbms along with the techniques proposed to support these functionalities
including an extension to SQL. We also outline some open issues in building
bdbms.Comment: This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute,
display, and perform the work, make derivative works and make commercial use
of the work, but, you must attribute the work to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR) January
710, 2007, Asilomar, California, US
The significance of the Skylab altimeter experiment results and potential applications
The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
There are no author-identified significant results in this report
Interaction of marine geodesy, satellite technology and ocean physics
The possible applications of satellite technology in marine geodesy and geodetic related ocean physics were investigated. Four major problems were identified in the areas of geodesy and ocean physics: (1) geodetic positioning and control establishment; (2) sea surface topography and geoid determination; (3) geodetic applications to ocean physics; and (4) ground truth establishment. It was found that satellite technology can play a major role in their solution. For solution of the first problem, the use of satellite geodetic techniques, such as Doppler and C-band radar ranging, is demonstrated to fix the three-dimensional coordinates of marine geodetic control if multi-satellite passes are used. The second problem is shown to require the use of satellite altimetry, along with accurate knowledge of ocean-dynamics parameters such as sea state, ocean tides, and mean sea level. The use of both conventional and advanced satellite techniques appeared to be necessary to solve the third and fourth problems
Geodetic analysis of Skylab altimetry preliminary data - SL/2 EREP pass 9
The author has identified the following significant results. The analysis was based on a time series intrinsic relationship between the satellite ephemeris, altimeter measured ranges, and the corresponding a priori values of subsatellite geoidal heights. Using sequential least squares processing with parameter weighting, the objective was to recover (1) the absolute geoidal heights of the subsatellite points, and (2) the associated altimeter calibration constant(s). Preliminary results from Skylab altimetry are given, using various combinations of orbit ephemeris and altimeter ranges as computed differently by NASA/JSC and NASA/Wallops. The influences of orbit accuracy, weighting functions, and a priori ground truth are described, based on the various combination solutions. It is shown that to deduce geoidal height by merely subtracting the height of the satellite from the altimeter range is inadmissible. The results of such direct subtraction can be very misleading if the orbit used is computed from data that included altimeter data used as height constraints. In view of the current state of knowledge, the use of geodetic ground truth samples as control benchmarks appears indispensable for the recovery of absolute geoidal heights with correct scale
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
There are no author-identified significant results in this report
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
There are no author-identified significant results in this report
- …