37 research outputs found
Time-Fractional Optimal Control of Initial Value Problems on Time Scales
We investigate Optimal Control Problems (OCP) for fractional systems
involving fractional-time derivatives on time scales. The fractional-time
derivatives and integrals are considered, on time scales, in the
Riemann--Liouville sense. By using the Banach fixed point theorem, sufficient
conditions for existence and uniqueness of solution to initial value problems
described by fractional order differential equations on time scales are known.
Here we consider a fractional OCP with a performance index given as a
delta-integral function of both state and control variables, with time evolving
on an arbitrarily given time scale. Interpreting the Euler--Lagrange first
order optimality condition with an adjoint problem, defined by means of right
Riemann--Liouville fractional delta derivatives, we obtain an optimality system
for the considered fractional OCP. For that, we first prove new fractional
integration by parts formulas on time scales.Comment: This is a preprint of a paper accepted for publication as a book
chapter with Springer International Publishing AG. Submitted 23/Jan/2019;
revised 27-March-2019; accepted 12-April-2019. arXiv admin note: substantial
text overlap with arXiv:1508.0075
On the stability and stabilization of some semilinear fractional differential equations in Banach Spaces
International audienceIn this paper, we prove the existence and uniqueness of a mild solution to a class of semilinear fractional differential equation in an infinite Banach space with Caputo derivative order 0 < α ≤ 1. Furthermore, we establish the stability conditions and then prove that the considered initial value problem is exponentially stabilizable when the stabilizer acts linearly on the control system