37 research outputs found

    Time-Fractional Optimal Control of Initial Value Problems on Time Scales

    Full text link
    We investigate Optimal Control Problems (OCP) for fractional systems involving fractional-time derivatives on time scales. The fractional-time derivatives and integrals are considered, on time scales, in the Riemann--Liouville sense. By using the Banach fixed point theorem, sufficient conditions for existence and uniqueness of solution to initial value problems described by fractional order differential equations on time scales are known. Here we consider a fractional OCP with a performance index given as a delta-integral function of both state and control variables, with time evolving on an arbitrarily given time scale. Interpreting the Euler--Lagrange first order optimality condition with an adjoint problem, defined by means of right Riemann--Liouville fractional delta derivatives, we obtain an optimality system for the considered fractional OCP. For that, we first prove new fractional integration by parts formulas on time scales.Comment: This is a preprint of a paper accepted for publication as a book chapter with Springer International Publishing AG. Submitted 23/Jan/2019; revised 27-March-2019; accepted 12-April-2019. arXiv admin note: substantial text overlap with arXiv:1508.0075

    On the stability and stabilization of some semilinear fractional differential equations in Banach Spaces

    No full text
    International audienceIn this paper, we prove the existence and uniqueness of a mild solution to a class of semilinear fractional differential equation in an infinite Banach space with Caputo derivative order 0 < α ≤ 1. Furthermore, we establish the stability conditions and then prove that the considered initial value problem is exponentially stabilizable when the stabilizer acts linearly on the control system
    corecore