317 research outputs found

    Using b-tagging to enhance the SUSY reach of the CERN Large Hadron Collider

    Full text link
    Assuming that supersymmetry is realized with parameters in the hyperbolic branch/focus point (HB/FP) region of the minimal supergravity (mSUGRA) model, we show that by searching for multijet + missing E_T events with tagged b jets the reach of experiments at the LHC may be extended by as much as 20% from current projections. The reason for this is that gluino decays to third generation quarks are enhanced because the lightest neutralino has substantial higgsino components. Although we were motivated to perform this analysis because the HB/FP region is compatible with the recent determination of the relic density of cold dark matter, our considerations may well have a wider applicability since decays of gluinos to third generation quarks are favoured in a wide variety of models.Comment: 16 pages, 1 figur

    p p -> j j e+/- mu+/- nu nu and j j e+/- mu-/+ nu nu at O(\alpha_{em}^6) and O(\alpha_{em}^4 \alpha_s^2) for the Study of the Quartic Electroweak Gauge Boson Vertex at LHC

    Full text link
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study the structure of quartic vector-boson interactions through the pair production of electroweak gauge bosons via weak boson fusion q q -> q q W W. In order to study these couplings we have performed a partonic level calculation of all processes p p -> j j e+/- mu+/- nu nu and pp -> j j e+/- mu-/+ nu nu at the LHC using the exact matrix elements at O(\alpha_{em}^6) and O(\alpha_{em}^4 \alpha_s^2) as well as a full simulation of the t tbar plus 0 to 2 jets backgrounds. A complete calculation of the scattering amplitudes is necessary not only for a correct description of the process but also to preserve all correlations between the final state particles which can be used to enhance the signal. Our analyses indicate that the LHC can improve by more than one order of magnitude the bounds arising at present from indirect measurements.Comment: 26 pages, 8 figures, revised version with some typos corrected, and some comments and references adde

    B_{s,d} -> l^+ l^- and K_L -> l^+ l^- in SUSY models with non-minimal sources of flavour mixing

    Full text link
    We present a general analysis of B_{s,d}-> l^+ l^- and K_L -> l^+ l^- decays in supersymmetric models with non-minimal sources of flavour mixing. In spite of the existing constraints on off-diagonal squark mass terms, these modes could still receive sizeable corrections, mainly because of Higgs-mediated FCNCs arising at large tan(beta). The severe limits on scenarios with large tan(beta) and non-negligible {tilde d}^i_{R(L)}-{d-tilde}^j_{R(L)} mixing imposed by the present experimental bounds on these modes and Delta B=2 observables are discussed in detail. In particular, we show that scalar-current contributions to K_L -> l^+ l^- and B-{bar B} mixing set non-trivial constraints on the possibility that B_s -> l^+ l^- and B_d -> l^+ l^- receive large corrections.Comment: 18 pages, 4 figures (v2: minor changes, published version

    Bounds on second generation scalar leptoquarks from the anomalous magnetic moment of the muon

    Get PDF
    We calculate the contribution of second generation scalar leptoquarks to the anomalous magnetic moment of the muon (AMMM). In the near future, E-821 at Brookhaven will reduce the experimental error on this parameter to Δaμexp<4×1010\Delta a_\mu^{\rm exp}<4\times 10^{-10}, an improvement of 20 over its current value. With this new experimental limit we obtain a lower mass limit of mΦL>186m_{\Phi_L}>186\ GeV for the second generation scalar leptoquark, when its Yukawa-like coupling λΦL\lambda_{\Phi_L}\ to quarks and leptons is taken to be of the order of the electroweak coupling g2g_2.Comment: 5 pages, plain tex, 1 figure (not included available under request

    Updated Constraints on the Minimal Supergravity Model

    Get PDF
    Recently, refinements have been made on both the theoretical and experimental determinations of the i.) mass of the lightest Higgs scalar (m_h), ii.) relic density of cold dark matter in the universe (Omega_CDM h^2), iii.) branching fraction for radiative B decay BF(b \to s \gamma), iv.) muon anomalous magnetic moment (a_\mu), and v.) flavor violating decay B_s \to \mu^+\mu^-. Each of these quantities can be predicted in the MSSM, and each depends in a non-trivial way on the spectra of SUSY particles. In this paper, we present updated constraints from each of these quantities on the minimal supergravity (mSUGRA) model as embedded in the computer program ISAJET. The combination of constraints points to certain favored regions of model parameter space where collider and non-accelerator SUSY searches may be more focussed.Comment: 20 pages, 6 figures. Version published in JHE

    Sneutrino Mass Measurements at e+e- Linear Colliders

    Get PDF
    It is generally accepted that experiments at an e+e- linear colliders will be able to extract the masses of the selectron as well as the associated sneutrinos with a precision of ~ 1% by determining the kinematic end points of the energy spectrum of daughter electrons produced in their two body decays to a lighter neutralino or chargino. Recently, it has been suggested that by studying the energy dependence of the cross section near the production threshold, this precision can be improved by an order of magnitude, assuming an integrated luminosity of 100 fb^-1. It is further suggested that these threshold scans also allow the masses of even the heavier second and third generation sleptons and sneutrinos to be determined to better than 0.5%. We re-examine the prospects for determining sneutrino masses. We find that the cross sections for the second and third generation sneutrinos are too small for a threshold scan to be useful. An additional complication arises because the cross section for sneutrino pair to decay into any visible final state(s) necessarily depends on an unknown branching fraction, so that the overall normalization in unknown. This reduces the precision with which the sneutrino mass can be extracted. We propose a different strategy to optimize the extraction of m(\tilde{\nu}_\mu) and m(\tilde{\nu}_\tau) via the energy dependence of the cross section. We find that even with an integrated luminosity of 500 fb^-1, these can be determined with a precision no better than several percent at the 90% CL. We also examine the measurement of m(\tilde{\nu}_e) and show that it can be extracted with a precision of about 0.5% (0.2%) with an integrated luminosity of 120 fb^-1 (500 fb^-1).Comment: RevTex, 46 pages, 15 eps figure

    Probing Slepton Mass Non-Universality at e^+e^- Linear Colliders

    Full text link
    There are many models with non-universal soft SUSY breaking sfermion mass parameters at the grand unification scale. Even in the mSUGRA model scalar mass unification might occur at a scale closer to M_Planck, and renormalization effects would cause a mass splitting at M_GUT. We identify an experimentally measurable quantity Delta that correlates strongly with delta m^2 = m^2_{selectron_R}(M_GUT) - m^2_{selectron_L}(M_GUT), and which can be measured at electron-positron colliders provided both selectrons and the chargino are kinematically accessible. We show that if these sparticle masses can be measured with a precision of 1% at a 500 GeV linear collider, the resulting precision in the determination of Delta may allow experiments to distinguish between scalar mass unification at the GUT scale from the corresponding unification at Q ~ M_Planck. Experimental determination of Delta would also provide a distinction between the mSUGRA model and the recently proposed gaugino-mediation model. Moreover, a measurement of Delta (or a related quantity Delta') would allow for a direct determination of delta m^2.Comment: 15 pages, RevTeX, 4 postscript figure

    S, T, and Leptoquarks at HERA

    Get PDF
    If the recently discovered anomalous events at HERA are due to a scalar leptoquark, then it is very likely to have weak isospin I=1/2I = 1/2. In that case, present precision measurements of the oblique radiative parameters SS and TT provide strong constraints on the mass of the other component of this doublet. If the standard model is extended to include such a doublet, a slightly better fit may in fact be obtained. However, in specific proposed models where this doublet comes from a larger symmetry, there are often additional large and positive contributions to SS from exotic heavy fermions which far exceed the present experimental limit. A way to improve the Tevatron exploration of leptoquarks is proposed.Comment: 10 pages including 3 figure
    corecore