2,772 research outputs found
The Internal Dynamics of Globular Clusters
Galactic globular clusters are ancient building blocks of our Galaxy. They
represent a very interesting family of stellar systems in which some
fundamental dynamical processes have been taking place for more than 10 Gyr,
but on time scales shorter than the age of the universe. In contrast with
galaxies, these star clusters represent unique laboratories for learning about
two-body relaxation, mass segregation from equipartition of energy, stellar
collisions, stellar mergers, core collapse, and tidal disruption. This review
briefly summarizes some of the tremendous developments that have taken place
during the last two decades. It ends with some recent results on tidal tails
around galactic globular clusters and on a very massive globular cluster in
M31.Comment: An invited review (32 pages, 7 figures) in "The Chaotic Universe:
Theory, Observations, Computer Experiments", Proceedings of the ICRA
Rome-Pescara workshop, eds. V.G. Gurzadyan and R. Ruffini (Singapore: World
Sci.), in pres
The Stellar Dynamics of Omega Centauri
The stellar dynamics of Omega Centauri are inferred from the radial
velocities of 469 stars measured with CORAVEL (Mayor et al. 1997). Rather than
fit the data to a family of models, we generate estimates of all dynamical
functions nonparametrically, by direct operation on the data. The cluster is
assumed to be oblate and edge-on but mass is not assumed to follow light. The
mean motions are consistent with axisymmetry but the rotation is not
cylindrical. The peak rotational velocity is 7.9 km/s at 11 pc from the center.
The apparent rotation of Omega Centauri is attributable in part to its proper
motion. We reconstruct the stellar velocity ellipsoid as a function of
position, assuming isotropy in the meridional plane. We find no significant
evidence for a difference between the velocity dispersions parallel and
perpendicular to the meridional plane. The mass distribution inferred from the
kinematics is slightly more extended than, though not strongly inconsistent
with, the luminosity distribution. We also derive the two-integral distribution
function f(E,Lz) implied by the velocity data.Comment: 25 Latex pages, 12 Postscript figures, uses aastex, epsf.sty.
Submitted to The Astronomical Journal, December 199
Interpolating point spread function anisotropy
Planned wide-field weak lensing surveys are expected to reduce the
statistical errors on the shear field to unprecedented levels. In contrast,
systematic errors like those induced by the convolution with the point spread
function (PSF) will not benefit from that scaling effect and will require very
accurate modeling and correction. While numerous methods have been devised to
carry out the PSF correction itself, modeling of the PSF shape and its spatial
variations across the instrument field of view has, so far, attracted much less
attention. This step is nevertheless crucial because the PSF is only known at
star positions while the correction has to be performed at any position on the
sky. A reliable interpolation scheme is therefore mandatory and a popular
approach has been to use low-order bivariate polynomials. In the present paper,
we evaluate four other classical spatial interpolation methods based on splines
(B-splines), inverse distance weighting (IDW), radial basis functions (RBF) and
ordinary Kriging (OK). These methods are tested on the Star-challenge part of
the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) simulated data and
are compared with the classical polynomial fitting (Polyfit). We also test all
our interpolation methods independently of the way the PSF is modeled, by
interpolating the GREAT10 star fields themselves (i.e., the PSF parameters are
known exactly at star positions). We find in that case RBF to be the clear
winner, closely followed by the other local methods, IDW and OK. The global
methods, Polyfit and B-splines, are largely behind, especially in fields with
(ground-based) turbulent PSFs. In fields with non-turbulent PSFs, all
interpolators reach a variance on PSF systematics better than
the upper bound expected by future space-based surveys, with
the local interpolators performing better than the global ones
Palomar 13: a velocity dispersion inflated by binaries ?
Recently, combining radial velocities from Keck/HIRES echelle spectra with
published proper motion membership probabilities, Cote et al (2002) observed a
sample of 21 stars, probable members of Palomar 13, a globular cluster in the
Galactic halo. Their projected velocity dispersion sigma_p = 2.2 +/-0.4 km/s
gives a mass-to-light ratio M/L_V = 40 +24/-17, about one order of magnitude
larger than the usual estimate for globular clusters. We present here radial
velocities measured from three different CCD frames of commissioning
observations obtained with the new ESO/VLT instrument FLAMES (Fibre Large Array
Multi Element Spectrograph). From these data, now publicly available, we
measure the homogeneous radial velocities of eight probable members of this
globular cluster. A new projected velocity dispersion sigma_p = 0.6-0.9 +/-0.3
km/s implies Palomar 13 mass-to-light ratio M/L_V = 3-7, similar to the usual
value for globular clusters. We discuss briefly the two most obvious reasons
for the previous unusual mass-to-light ratio finding: binaries, now clearly
detected, and more homogeneous data from the multi-fibre FLAMES spectrograph.Comment: 9 pages, 2 Postscript figure
Microlensing of the broad line region in 17 lensed quasars
When an image of a strongly lensed quasar is microlensed, the different
components of its spectrum are expected to be differentially magnified owing to
the different sizes of the corresponding emitting region. Chromatic changes are
expected to be observed in the continuum while the emission lines should be
deformed as a function of the size, geometry and kinematics of the regions from
which they originate. Microlensing of the emission lines has been reported only
in a handful of systems so far. In this paper we search for microlensing
deformations of the optical spectra of pairs of images in 17 lensed quasars.
This sample is composed of 13 pairs of previously unpublished spectra and four
pairs of spectra from literature. Our analysis is based on a spectral
decomposition technique which allows us to isolate the microlensed fraction of
the flux independently of a detailed modeling of the quasar emission lines.
Using this technique, we detect microlensing of the continuum in 85% of the
systems. Among them, 80% show microlensing of the broad emission lines.
Focusing on the most common lines in our spectra (CIII] and MgII) we detect
microlensing of either the blue or the red wing, or of both wings with the same
amplitude. This observation implies that the broad line region is not in
general spherically symmetric. In addition, the frequent detection of
microlensing of the blue and red wings independently but not simultaneously
with a different amplitude, does not support existing microlensing simulations
of a biconical outflow. Our analysis also provides the intrinsic flux ratio
between the lensed images and the magnitude of the microlensing affecting the
continuum. These two quantities are particularly relevant for the determination
of the fraction of matter in clumpy form in galaxies and for the detection of
dark matter substructures via the identification of flux ratio anomalies.Comment: Accepted for publication in Astronomy and Astrophysics. Main data set
available via the German virtual observatory
http://dc.g-vo.org/mlqso/q/web/form and soon via CDS. Additional material
available on reques
Probing the inner structure of distant AGNs with gravitational lensing
Microlensing is a powerful technique which can be used to study the continuum
and the broad line emitting regions in distant AGNs. After a brief description
of the methods and required data, we present recent applications of this
technique. We show that microlensing allows one to measure the temperature
profile of the accretion disc, estimate the size and study the geometry of the
region emitting the broad emission lines.Comment: 6 pages, Proceedings of the Seyfert 2012 conferenc
Evaluating the effect of stellar multiplicity on the PSF of space-based weak lensing surveys
The next generation of space-based telescopes used for weak lensing surveys
will require exquisite point spread function (PSF) determination. Previously
negligible effects may become important in the reconstruction of the PSF, in
part because of the improved spatial resolution. In this paper, we show that
unresolved multiple star systems can affect the ellipticity and size of the PSF
and that this effect is not cancelled even when using many stars in the
reconstruction process. We estimate the error in the reconstruction of the PSF
due to the binaries in the star sample both analytically and with image
simulations for different PSFs and stellar populations. The simulations support
our analytical finding that the error on the size of the PSF is a function of
the multiple stars distribution and of the intrinsic value of the size of the
PSF, i.e. if all stars were single. Similarly, the modification of each of the
complex ellipticity components (e1,e2) depends on the distribution of multiple
stars and on the intrinsic complex ellipticity. Using image simulations, we
also show that the predicted error in the PSF shape is a theoretical limit that
can be reached only if large number of stars (up to thousands) are used
together to build the PSF at any desired spatial position. For a lower number
of stars, the PSF reconstruction is worse. Finally, we compute the effect of
binarity for different stellar magnitudes and show that bright stars alter the
PSF size and ellipticity more than faint stars. This may affect the design of
PSF calibration strategies and the choice of the related calibration fields.Comment: 10 pages, 6 figures, accepted in A&
Firedec: a two-channel finite-resolution image deconvolution algorithm
We present a two-channel deconvolution method that decomposes images into a
parametric point-source channel and a pixelized extended-source channel. Based
on the central idea of the deconvolution algorithm proposed by Magain, Courbin
& Sohy (1998), the method aims at improving the resolution of the data rather
than at completely removing the point spread function (PSF). Improvements over
the original method include a better regularization of the pixel channel of the
image, based on wavelet filtering and multiscale analysis, and a better
controlled separation of the point source vs. the extended source. In addition,
the method is able to simultaneously deconvolve many individual frames of the
same object taken with different instruments under different PSF conditions.
For this purpose, we introduce a general geometric transformation between
individual images. This transformation allows the combination of the images
without having to interpolate them. We illustrate the capability of our
algorithm using real and simulated images with complex diffraction-limited PSF.Comment: Accepted in A&A. An application of the technique to real data is
available in Cantale et al. http://arxiv.org/abs/1601.05192v
- …
