27 research outputs found

    Nucleosome DNA sequence structure of isochores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Significant differences in G+C content between different isochore types suggest that the nucleosome positioning patterns in DNA of the isochores should be different as well.</p> <p>Results</p> <p>Extraction of the patterns from the isochore DNA sequences by Shannon N-gram extension reveals that while the general motif YRRRRRYYYYYR is characteristic for all isochore types, the dominant positioning patterns of the isochores vary between TAAAAATTTTTA and CGGGGGCCCCCG due to the large differences in G+C composition. This is observed in human, mouse and chicken isochores, demonstrating that the variations of the positioning patterns are largely G+C dependent rather than species-specific. The species-specificity of nucleosome positioning patterns is revealed by dinucleotide periodicity analyses in isochore sequences. While human sequences are showing CG periodicity, chicken isochores display AG (CT) periodicity. Mouse isochores show very weak CG periodicity only.</p> <p>Conclusions</p> <p>Nucleosome positioning pattern as revealed by Shannon N-gram extension is strongly dependent on G+C content and different in different isochores. Species-specificity of the pattern is subtle. It is reflected in the choice of preferentially periodical dinucleotides.</p

    Repertoires of the Nucleosome-Positioning Dinucleotides

    Get PDF
    It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context

    Predicting Human Nucleosome Occupancy from Primary Sequence

    Get PDF
    Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning, which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and affirm the classical statistical positioning theory of nucleosome organization
    corecore