11,922 research outputs found

    Primordial black holes from cosmic necklaces

    Full text link
    Cosmic necklaces are hybrid topological defects consisting of monopoles and strings. We argue that primordial black holes(PBHs) may have formed from loops of the necklaces, if there exist stable winding states, such as coils and cycloops. Unlike the standard scenario of PBH formation from string loops, in which the kinetic energy plays important role when strings collapse into black holes, the PBH formation may occur in our scenario after necklaces have dissipated their kinetic energy. Then, the significant difference appears in the production ratio. In the standard scenario, the production ratio ff becomes a tiny fraction f∌10−20f\sim 10^{-20}, however it becomes f∌1f \sim 1 in our case. On the other hand, the typical mass of the PBHs is much smaller than the standard scenario, if they are produced in the same epoch. As the two mechanisms may work at the same time, the necklaces may have more than one channel of the gravitational collapse. Although the result obtained in this paper depends on the evolution of the dimensionless parameter rr, the existence of the winding state could be a serious problem in some cases. Since the existence of the winding state in brane models is due to the existence of a non-tivial circle in the compactified space, the PBH formation can be used to probe the structure of the compactified space. Black holes produced by this mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for publication in JHE

    Remote Inflation: Hybrid-like inflation without hybrid-type potential

    Full text link
    A new scenario of hybrid-like inflation is considered without using hybrid-type potential. Radiation raised continuously by a dissipating inflaton field keeps symmetry restoration in a remote sector, and the false-vacuum energy of the remote sector dominates the energy density during inflation. Remote inflation is terminated when the temperature reaches the critical temperature, or when the slow-roll condition is violated. Without introducing a complex form of couplings, inflaton field may either roll-in (like a standard hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential inflation) on arbitrary inflaton potential. Significant signatures of remote inflation can be observed in the spectrum caused by (1) the inhomogeneous phase transition in the remote sector, or (2) a successive phase transition in the remote sector. Remote inflation can predict strong amplification or suppression of small-scale perturbations without introducing multiple inflation. Since the inflaton may have a run-away potential, it is also possible to identify the inflaton with quintessence, without introducing additional mechanisms. Even if the false-vacuum energy is not dominated by the remote sector, the phase transition in the remote sector is possible during warm inflation, which may cause significant amplification/suppression of the curvature perturbations.Comment: 28 pages, 1 figure, fixed references, accepted for publication in JCA

    Evolution of the curvature perturbations during warm inflation

    Full text link
    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.Comment: 23 pages, 1 figure, fixed references, accepted for publication in JCA

    Running spectral index from shooting-star moduli

    Full text link
    We construct an inflationary model that is consistent with both large non-Gaussianity and a running spectral index. The scenario of modulated inflation suggests that modulated perturbation can induce the curvature perturbation with a large non-Gaussianity, even if the inflaton perturbation is negligible. Using this idea, we consider a multi-field extension of the modulated inflation scenario and examine the specific situation where different moduli are responsible for the perturbation at different scales. We suppose that the additional moduli (shooting-star moduli) is responsible for the curvature perturbation at the earlier inflationary epoch and it generates the fluctuation with n>1 spectral index at this scale. After a while, another moduli (or inflaton) takes the place and generates the perturbation with n<1. At the transition point the two fluctuations are comparable with each other. We show how the spectral index is affected by the transition induced by the shooting-star moduli.Comment: 14 pages, latex, accepted for publication in JHE

    String production after angled brane inflation

    Full text link
    We describe string production after angled brane inflation. First, we point out that there was a discrepancy in previous discussions. The expected tension of the cosmic string calculated from the four-dimensional effective Lagrangian did not match the one obtained in the brane analysis. In the previous analysis, the cosmic string is assumed to correspond to the lower-dimensional daughter brane, which wraps the same compactified space as the original mother brane. In this case, however, the tension of the daughter brane cannot depend on the angle (\theta). On the other hand, from the analysis of the effective Lagrangian for tachyon condensation, it is easy to see that the tension of the cosmic string must be proportional to \theta, when \theta << 1. This is an obvious discrepancy that must be explained by consideration of the explicit brane dynamics. In this paper, we will solve this problem by introducing a simple idea. We calculate the tension of the string in the two cases, which matches precisely. The cosmological constraint for angled inflation is relaxed, because the expected tension of the cosmic string becomes smaller than the one obtained in previous arguments, by a factor of \theta.Comment: 13pages, 3 figures, typos correcte

    Dark matter production from cosmic necklaces

    Full text link
    Cosmic strings have gained a great interest, since they are formed in a large class of brane inflationary models. The most interesting story is that cosmic strings in brane models are distinguished in future cosmological observations. If the strings in brane models are branes or superstrings that can move along compactified space, and also if there are degenerated vacua along the compactified space, kinks interpolate between degenerated vacua become ``beads'' on the strings. In this case, strings turn into necklaces. In the case that the compact manifold in not simply connected, a string loop that winds around a nontrivial circle is stable due to the topological reason. Since the existence of the (quasi-)degenerated vacua and the nontrivial circle is a common feature of the brane models, it is important to study cosmological constraints on the cosmic necklaces and the stable winding states. In this paper, we consider dark matter production from loops of the cosmic necklaces. Our result suggests that necklaces can put stringent bound on certain kinds of brane models.Comment: 27 pages, 5 figures, added many comments and 3 figures, accepted for publication in JCA

    Elliptic Inflation: Generating the curvature perturbation without slow-roll

    Get PDF
    There are many inflationary models in which inflaton field does not satisfy the slow-roll condition. However, in such models, it is always difficult to generate the curvature perturbation during inflation. Thus, to generate the curvature perturbation, one must introduce another component to the theory. To cite a case, curvatons may generate dominant part of the curvature perturbation after inflation. However, we have a question whether it is unrealistic to consider the generation of the curvature perturbation during inflation without slow-roll. Assuming multi-field inflation, we encounter the generation of the curvature perturbation during inflation without slow-roll. The potential along equipotential surface is flat by definition and thus we do not have to worry about symmetry. We also discuss about KKLT models, in which corrections lifting the inflationary direction may not become a serious problem if there is a symmetry enhancement at the tip (not at the moving brane) of the inflationary throat.Comment: 27pages, 8figures, to appear in JCA

    Formation of monopoles and domain walls after brane inflation

    Full text link
    We study cosmological defect formation after brane inflation. The cosmological defects are corresponding to the branes that have less than three spacial dimensions in the uncompactified spacetime. Contrary to the previous arguments, production of monopoles and domain walls are not always negligible. Monopoles and domain walls are formed by the branes extended between mother branes.Comment: 27pages, 7 figures, many comments, footnotes and reviews are added, to appear in JHE

    Replica analysis of partition-function zeros in spin-glass models

    Full text link
    We study the partition-function zeros in mean-field spin-glass models. We show that the replica method is useful to find the locations of zeros in a complex parameter plane. For the random energy model, we obtain the phase diagram in the plane and find that there are two types of distribution of zeros: two-dimensional distribution within a phase and one-dimensional one on a phase boundary. Phases with a two-dimensional distribution are characterized by a novel order parameter defined in the present replica analysis. We also discuss possible patterns of distributions by studying several systems.Comment: 23 pages, 12 figures; minor change
    • 

    corecore