16 research outputs found

    Three-dimensional simulations of premixed hydrogen/air flames in microtubes

    Get PDF
    The dynamics of fuel-lean (equivalence ratio φ = 0.5) premixed hydrogen/air atmospheric pressure flames are investigated in open cylindrical tubes with diameters of d = 1.0 and 1.5 mm using three-dimensional numerical simulations with detailed chemistry and transport. In both cases, the inflow velocity is varied over the range where the flames can be stabilized inside the computational domain. Three axisymmetric combustion modes are observed in the narrow tube: steady mild combustion, oscillatory ignition/extinction and steady flames as the inflow velocity is varied in the range 0.5 ≤ UIN ≤ 500 cm s−1. In the wider tube, richer flame dynamics are observed in the form of steady mild combustion, oscillatory ignition/extinction, steady closed and open axisymmetric flames, steady non-axisymmetric flames and azimuthally spinning flames (0.5 ≤ UIN ≤ 600 cm s−1). Coexistence of the spinning and the axisymmetric modes is obtained over relatively wide ranges of UIN. Axisymmetric simulations are also performed in order to better understand the nature of the observed transitions in the wider tube. Fourier analysis during the transitions from the steady axisymmetric to the three-dimensional spinning mode and to the steady non-axisymmetric modes reveals that the m = 1 azimuthal mode plays a dominant role in the transition

    Parameter extraction from experimental PEFC data using an evolutionary optimization algorithm

    No full text
    The accurate characterization of the parameters related to the charge and water transport in the ionomer membrane of polymer electrolyte fuel cells (PEFC) is highly important for the understanding and interpretation of the overall cell behavior. Despite the big efforts to experimentally determine these parameters, a large scatter of data is reported in the literature, due to the inherent experimental difficulties. Likewise, the porosity and tortuosity of the gas diffusion layers affect the membrane water content and the local cell performance, but the published data are usually measured ex-situ, not accounting for the effect of clamping pressure. Using a quasi two-dimensional model and experimental current density data from a linear cell of technical size, a multiparameter optimization procedure based on an evolutionary algorithm has been applied to determine eight material properties highly influencing the cell performance. The optimization procedure converges towards a well defined solution and the resulting parameter values are compared to those available in the literature. The quality of the set of parameters extracted by the optimization procedure is assessed by a sensitivity analysis

    Different modes of crack propagation in burning solid propellants

    No full text
    corecore