294 research outputs found

    Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution

    Get PDF
    Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800–1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression

    Common Promoter Elements in Odorant and Vomeronasal Receptor Genes

    Get PDF
    In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions

    Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing

    Get PDF
    Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation

    Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian olfactory receptors (ORs) are subject to a remarkable but poorly understood regime of transcriptional regulation, whereby individual olfactory neurons each express only one allele of a single member of the large OR gene family.</p> <p>Results</p> <p>We performed a rigorous search for enriched sequence motifs in the largest dataset of OR promoter regions analyzed to date. We combined measures of cross-species conservation with databases of known transcription factor binding sites and <it>ab initio </it>motif-finding algorithms. We found strong enrichment of binding sites for the O/E family of transcription factors and for homeodomain factors, both already known to be involved in the transcriptional control of ORs, but did not identify any novel enriched sequences. We also found that TATA-boxes are present in at least a subset of OR promoters.</p> <p>Conclusions</p> <p>Our rigorous approach provides a template for the analysis of the regulation of large gene families and demonstrates some of the difficulties and pitfalls of such analyses. Although currently available bioinformatics methods cannot detect all transcriptional regulatory elements, our thorough analysis of OR promoters shows that in the case of this gene family, experimental approaches have probably already identified all the binding factors common to large fractions of OR promoters.</p

    Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Get PDF
    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system

    A Framework for Exploring Functional Variability in Olfactory Receptor Genes

    Get PDF
    BACKGROUND: Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and subfamilies, a classification that is believed to be a proxy for OR gene functional variability. However, the assumption that overall protein sequence diversity is a good proxy for functional properties is untested. METHODOLOGY: Here, we propose an alternative sequence-based approach to infer the similarities and differences in OR binding capacity. Our approach is based on similarities and differences in the predicted binding pockets of OR genes, rather than on the entire OR coding region. CONCLUSIONS: Interestingly, our approach yields markedly different results compared to the analysis based on the entire OR coding-regions. While neither approach can be tested at this time, the discrepancy between the two calls into question the assumption that the current classification reliably reflects OR gene functional variability
    corecore