528 research outputs found
Recommended from our members
Organic electronics for neuromorphic computing
Neuromorphic computing could address the inherent limitations of conventional silicon technology in dedicated machine learning applications. Recent work on silicon-based asynchronous spiking neural networks and large crossbar-arrays of two-terminal memristive devices has led to the development of promising neuromorphic systems. However, delivering a compact and efficient parallel computing technology, such as artificial neural networks embedded in hardware, remains a significant challenge. Organic electronic materials offer an attractive alternative for such systems and could provide biocompatible and relatively inexpensive neuromorphic devices with low-energy switching and excellent tunability. Here, we review the development of organic neuromorphic devices. We consider different resistance switching mechanisms, which typically rely on electrochemical doping or charge trapping, and discuss the challenges the field faces in implementing low power neuromorphic computing, which include device downscaling, improving device speed, state retention and array compatibility. We highlight early demonstrations of device integration into arrays and finally consider future directions and potential applications of this technology
Energetic disorder at the metal/organic semiconductor interface
The physics of organic semiconductors is dominated by the effects of
energetic disorder. We show that image forces reduce the electrostatic
component of the total energetic disorder near an interface with a metal
electrode. Typically, the variance of energetic disorder is dramatically
reduced at the first few layers of organic semiconductor molecules adjacent to
the metal electrode. Implications for charge injection into organic
semiconductors are discussed.Comment: 9 pages, 2 figure
Recommended from our members
Conducting Polymer Scaffolds based on PEDOT and Xanthan Gum for Live-Cell Monitoring
Conducting polymer scaffolds can promote cell growth by electrical stimulation, which is advantageous for some specific type of cells such as neurons, muscle or cardiac cells. As an additional feature, the measure of their impedance has been demonstrated as a tool to monitor cell-growth within the scaffold. In this work, we present an innovative conducting polymer porous scaffolds based on poly(3,4-ethylenedioxythiophene) (PEDOT):xanthan gum instead of the well-known PEDOT:polystyrene sulfonate scaffolds. These novel scaffolds combine the conductivity of PEDOT, and the mechanical support and biocompatibity provided by a polysaccharide, xanthan gum. For this purpose, first the oxidative chemical polymerization of EDOT was carried out in the presence of polysaccharides leading to stable PEDOT/xanthan gum aqueous dispersions. Then by a simple freeze drying process porous scaffolds were prepared from these dispersions. Our results indicated that the porosity of the scaffolds and mechanical properties are tuned by the solids content and formulation of the initial PEDOT:polysaccharide dispersion. Scaffolds showed interconnected pore structure with tunable sizes ranging between 10 to 150 μm and Young’s moduli between 10 to 45 kPa. These scaffolds successfully support 3D cell cultures of MDCK II eGFP and MDCK II LifeAct epithelial cells, observing good cell attachment with very high degree of pore coverage. Interestingly, by measuring the impedance of the synthesized PEDOT scaffolds, the growth of the cells could be monitored
Transient behavior of photorefractive gratings in a polymer
The transient behavior of photorefractive gratings in the polymer composite poly(N-vinyl carbazole) (PVK), 2,4,7-trinitro-9-fluorenone (TNF), and N,N-diethyl-para-nitroaniline (EPNA) doped with various amounts of 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH) is presented. The influence on the hole drift mobility due to the change in the trap density induced by DEH, was directly measured. (C) 1995 American Institute of Physics
Recommended from our members
Stability of PEDOT:PSS-Coated Gold Electrodes in Cell Culture Conditions
Poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) is widely used as a coating on microelectrode arrays in order to reduce impedance for both in vitro and in vivo electrophysiology. In many applications, electrode performance of months to years is desired; yet, there are few studies to date that examine the long-term stability of conducting polymers and their devices. Here, the stability of PEDOT:PSS microelectrodes is examined over a period of four months in cell culture media enriched with fetal bovine serum. The electrochemical impedance remains constant for most electrodes throughout the study, and only small changes in the structure of functional electrodes are observed at the end of the test. The results demonstrate that PEDOT:PSS electrodes show adequate stability for a variety of in vitro electrophysiology applications in toxicology, drug development, tissue engineering, and fundamental studies of electrically active cells and tissues.A.L.R. acknowledges support from the Whitaker International Scholars Program and the European Commission’s Horizon 2020 Marie Sklodowska-Curie Individual Fellowship BRAIN CAMO (No. 797506). G.D. acknowledges support from the European Commission through the project of OrgBIO-ITN 607896
Benchmarking organic mixed conductors for transistors.
Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors
Control of charge trapping in a photorefractive polymer
Modification of the trap density of the photorefractive polymer composite poly(N-vinyl carbazole) (PVK), 2,4,7-trinitro-9-fluorenone (TNF) and N,N-diethyl-para-nitroaniline (EPNA) was achieved with the addition of 4-(diethylamino)benzaldehyde diphenylhydrazone (DEH). Measurements of the response time, the phase shift and the amplitude of the photorefractive grating are presented
Neuromorphic device architectures with global connectivity through electrolyte gating.
Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity
Photorefractive polymer composite with net gain and subsecond response at 633 nm
By combining the well-known photoconductor poly(N-vinyl carbazole) sensitized with 2,4,7 trinitro-9-fluorenone and the electrooptic molecule N,N,diethyl-substituted para-nitroaniline, which is transparent at 633 nm, a photorefractive polymer composite suitable for applications with He-Ne lasers was developed. Net gain of 18 cm-1 and 400 ms response time were measured on a 65-mum-thick sample
- …