4,200 research outputs found

    Reply to Norsen's paper "Are there really two different Bell's theorems?"

    Get PDF
    Yes. That is my polemical reply to the titular question in Travis Norsen's self-styled "polemical response to Howard Wiseman's recent paper." Less polemically, I am pleased to see that on two of my positions --- that Bell's 1964 theorem is different from Bell's 1976 theorem, and that the former does not include Bell's one-paragraph heuristic presentation of the EPR argument --- Norsen has made significant concessions. In his response, Norsen admits that "Bell's recapitulation of the EPR argument in [the relevant] paragraph leaves something to be desired," that it "disappoints" and is "problematic". Moreover, Norsen makes other statements that imply, on the face of it, that he should have no objections to the title of my recent paper ("The Two Bell's Theorems of John Bell"). My principle aim in writing that paper was to try to bridge the gap between two interpretational camps, whom I call 'operationalists' and 'realists', by pointing out that they use the phrase "Bell's theorem" to mean different things: his 1964 theorem (assuming locality and determinism) and his 1976 theorem (assuming local causality), respectively. Thus, it is heartening that at least one person from one side has taken one step on my bridge. That said, there are several issues of contention with Norsen, which we (the two authors) address after discussing the extent of our agreement with Norsen. The most significant issues are: the indefiniteness of the word 'locality' prior to 1964; and the assumptions Einstein made in the paper quoted by Bell in 1964 and their relation to Bell's theorem.Comment: 13 pages (arXiv version) in http://www.ijqf.org/archives/209

    Heterodyne and adaptive phase measurements on states of fixed mean photon number

    Get PDF
    The standard technique for measuring the phase of a single mode field is heterodyne detection. Such a measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently it has been shown [H. M. Wiseman and R. B. Killip, Phys. Rev. A 57, 2169 (1998)] that an adaptive technique introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon number. We also analytically derive the asymptotics for these variances. For the case of heterodyne detection our results disagree with the power law claimed by D'Ariano and Paris [Phys. Rev. A 49, 3022 (1994)].Comment: 9 pages, 2 figures, minor changes from journal versio

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Quantum error correction for continuously detected errors

    Get PDF
    We show that quantum feedback control can be used as a quantum error correction process for errors induced by weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n−1n-1)-qubit logical state encoded in nn physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. In addition, universal quantum computation is possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber \emph{et al.}, Phys. Rev. Lett. 86, 4402 (2001)].Comment: 11 pages, 1 figure; minor correction

    On quantum error-correction by classical feedback in discrete time

    Full text link
    We consider the problem of correcting the errors incurred from sending quantum information through a noisy quantum environment by using classical information obtained from a measurement on the environment. For discrete time Markovian evolutions, in the case of fixed measurement on the environment, we give criteria for quantum information to be perfectly corrigible and characterize the related feedback. Then we analyze the case when perfect correction is not possible and, in the qubit case, we find optimal feedback maximizing the channel fidelity.Comment: 11 pages, 1 figure, revtex
    • 

    corecore