46 research outputs found

    Thermal expansion and effect of pressure on superconductivity in CuxTiSe2

    Full text link
    We report measurements of thermal expansion on a number of polycrystalline CuxTiSe2 samples corresponding to the parts of x - T phase diagram with different ground states, as well as the pressure dependence of the superconducting transition temperature for samples with three different values of Cu-doping. Thermal expansion data suggest that the x - T phase diagram may be more complex than initially reported. T_c data at elevated pressure can be scaled to the ambient pressure CuxTiSe2 phase diagram, however, significantly different scaling factors are needed to accommodate the literature data on the charge density wave transition suppression under pressure

    Anisotropic thermal expansion and magnetostriction of YNi2_2B2_2C single crystals

    Full text link
    We present results of anisotropic thermal expansion and low temperature magnetostriction measurements on YNi2_2B2_2C single crystals grown by high temperature flux and floating zone techniques. Quantum oscillations of magnetostriction were observed at low temperatures for H∥cH \| c starting at fields significantly below Hc2H_{c2} (H<0.7Hc2H < 0.7 H_{c2}). Large irreversible, longitudinal magnetostriction was seen in both, in-plane and along the c-axis, directions of the applied magnetic field in the intermediate superconducting state. Anisotropic uniaxial pressure dependencies of TcT_c were evaluated using results of zero field, thermal expansion measurements

    Thermal Expansion and Magnetostriction of the Ising Antiferromagnet TbNi2Ge2

    Get PDF
    We have measured the linear thermal expansion and magnetostriction of the Ising antiferromagnet TbNi2Ge2 along its c-axis from room temperature to 2 K and in magnetic fields to 14 T. We find a magnetic phase diagram that agrees with earlier work and estimate aspects of its uniaxial pressure dependence. We also find a new high field feature near 10 T which may signal the onset of an additional field-induced phase.Comment: 2 pages, to apear in proceedings of 24th International Conference on Low Temperature Physic

    High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    Get PDF
    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7T^{\textrm{*}}=0.7 K, fragile antiferromagnetic order below TN=0.4T_{\rm{N}}=0.4 K, a Kondo temperature of TK≈1T_{\textrm{K}} \approx1 K, and crystalline-electric-field splitting on the order of E/kB=1 - 10E/k_{\textrm{B}}=1\,\textrm{-}\,10 K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈6 - 10×10−5\approx6\,\textrm{-}\,10\times10^{-5} \AA, no structural phase transition occurs between T=1.5T=1.5 and 5050 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈18\approx18 K and a region of negative thermal expansion for 9<T<189<T<18 K. Despite diffraction patterns taken at 1.61.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+^{3+} residing on a site with either cubic or less than cubic point symmetry.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn5_5: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state

    Full text link
    We report high magnetic field linear magnetostriction experiments on CeCoIn5_5 single crystals. Two features are remarkable: (i) a sharp discontinuity in all the crystallographic axes associated with the upper superconducting critical field Bc2B_{c2} that becomes less pronounced as the temperature increases; (ii) a distinctive second order-like feature observed only along the c-axis in the high field (10 T ≲B≤Bc2 \lesssim B \leq B_{c2}) low temperature (T≲T \lesssim 0.35 K) region. This second order transition is observed only when the magnetic field lies within 20o^o of the ab-planes and there is no signature of it above Bc2B_{c2}, which raises questions regarding its interpretation as a field induced magnetically ordered phase. Good agreement with previous results suggests that this anomaly is related to the transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page

    Multiple regions of quantum criticality in YbAgGe

    Get PDF
    Dilation and thermopower measurements on YbAgGe, a heavy-fermion antiferromagnet, clarify and refine the magnetic field-temperature (H-T) phase diagram and reveal a field-induced phase with T-linear resistivity. On the low-H side of this phase we find evidence for a first-order transition and suggest that YbAgGe at 4.5 T may be close to a quantum critical end point. On the high-H side our results are consistent with a second-order transition suppressed to a quantum critical point near 7.2 T. We discuss these results in light of global phase diagrams proposed for Kondo lattice systems
    corecore