43,526 research outputs found

    ReDecay: A novel approach to speed up the simulation at LHCb

    Full text link
    With the steady increase in the precision of flavour physics measurements collected during LHC Run 2, the LHCb experiment requires simulated data samples of larger and larger sizes to study the detector response in detail. The simulation of the detector response is the main contribution to the time needed to simulate full events. This time scales linearly with the particle multiplicity. Of the dozens of particles present in the simulation only the few participating in the signal decay under study are of interest, while all remaining particles mainly affect the resolutions and efficiencies of the detector. This paper presents a novel development for the LHCb simulation software which re-uses the rest of the event from previously simulated events. This approach achieves an order of magnitude increase in speed and the same quality compared to the nominal simulation

    Activation of additional energy dissipation processes in the magnetization dynamics of epitaxial chromium dioxide films

    Full text link
    The precessional magnetization dynamics of a chromium dioxide(100)(100) film is examined in an all-optical pump-probe setup. The frequency dependence on the external field is used to extract the uniaxial in-plane anisotropy constant. The damping shows a strong dependence on the frequency, but also on the laser pump fluency, which is revealed as an important experiment parameter in this work: above a certain threshold further channels of energy dissipation open and the damping increases discontinuously. This behavior might stem from spin-wave instabilities

    Casimir energy density in closed hyperbolic universes

    Full text link
    The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with compact spatial sections of negative spatial curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil, 2002. Revised version, with altered Abstract and one new referenc

    Universal spectral form factor for chaotic dynamics

    Full text link
    We consider the semiclassical limit of the spectral form factor K(τ)K(\tau) of fully chaotic dynamics. Starting from the Gutzwiller type double sum over classical periodic orbits we set out to recover the universal behavior predicted by random-matrix theory, both for dynamics with and without time reversal invariance. For times smaller than half the Heisenberg time THf+1T_H\propto \hbar^{-f+1}, we extend the previously known τ\tau-expansion to include the cubic term. Beyond confirming random-matrix behavior of individual spectra, the virtue of that extension is that the ``diagrammatic rules'' come in sight which determine the families of orbit pairs responsible for all orders of the τ\tau-expansion.Comment: 4 pages, 1 figur

    Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Full text link
    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.Comment: 6 pages, 4 figures, final published versio
    corecore