701 research outputs found

    Oscillatory Tunneling between Quantum Hall Systems

    Full text link
    Electron tunneling between quantum Hall systems on the same two dimensional plane separated by a narrow barrier is studied. We show that in the limit where inelastic scattering time is much longer than the tunneling time, which can be achieved in practice, electrons can tunnel back and forth through the barrier continously, leading to an oscillating current in the absence of external drives. The oscillatory behavior is dictated by a tunneling gap in the energy spectrum. We shall discuss ways to generate oscillating currents and the phenomenon of natural ``dephasing" between the tunneling currents of edge states. The noise spectra of these junctions are also studied. They contain singularites reflecting the existence of tunneling gaps as well as the inherent oscillation in the system. (Figures will be given upon requests).Comment: 20 pages, OS

    Density of states near the Mott-Hubbard transition in the limit of large dimensions

    Full text link
    The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsion U is investigated in the limit of large dimensions. The behavior of the density of states near the transition at U=U_c is analyzed in all orders of the skeleton expansion. It is shown that only two transition scenarios are consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard transition is "discontinuous" in the sense that in the density of states finite spectral weight is redistributed at U_c. (ii) The transition occurs via a point at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys. Rev. Let

    Violation of Luttinger's Theorem in the Two-Dimensional t-J Model

    Full text link
    We have calculated the high temperature series for the momentum distribution function n_k of the 2D t-J model to 12th order in inverse temperature. By extrapolating the series to T=0.2J we searched for a Fermi surface of the 2D t-J model. We find that three criteria used for estimating the location of a Fermi surface violate Luttinger's Theorem, implying the 2D t-J model does not have an adiabatic connection to a non-interacting model.Comment: 4 pages, 5 figures. Version with grayscale figures available upon reques

    Magnetic hysteresis in Ising-like dipole-dipole model

    Full text link
    Using zero temperature Monte Carlo simulations we have studied the magnetic hysteresis in a three-dimensional Ising model with nearest neighbor exchange and dipolar interaction. The average magnetization of spins located inside a sphere on a cubic lattice is determined as a function of magnetic field varied periodically. The simulations have justified the appearance of hysteresis and allowed us to have a deeper insight into the series of metastable states developed during this process.Comment: REVTEX, 10 pages including 4 figure

    Non-equilibrium Plasmons in a Quantum Wire Single Electron Transistor

    Full text link
    We analyze a single electron transistor composed of two semi-infinite one dimensional quantum wires and a relatively short segment between them. We describe each wire section by a Luttinger model, and treat tunneling events in the sequential approximation when the system's dynamics can be described by a master equation. We show that the steady state occupation probabilities in the strongly interacting regime depend only on the energies of the states and follow a universal form that depends on the source-drain voltage and the interaction strength.Comment: 4 pages, 3 figures. To appear in the Phys. Rev. Let

    Hall Coefficient in an Interacting Electron Gas

    Full text link
    The Hall conductivity in a weak homogeneous magnetic field, ωcτ≪1\omega_{c}\tau \ll 1, is calculated. We have shown that to leading order in 1/ϵFτ1/\epsilon_{F}\tau the Hall coefficient RHR_{H} is not renormalized by the electron-electron interaction. Our result explains the experimentally observed stability of the Hall coefficient in a dilute electron gas not too close to the metal-insulator transition. We avoid the currently used procedure that introduces an artificial spatial modulation of the magnetic field. The problem of the Hall effect is reformulated in a way such that the magnetic flux associated with the scattering process becomes the central element of the calculation.Comment: 23 pages, 15 figure

    Trapping of a random walk by diffusing traps

    Full text link
    We present a systematic analytical approach to the trapping of a random walk by a finite density rho of diffusing traps in arbitrary dimension d. We confirm the phenomenologically predicted e^{-c_d rho t^{d/2}} time decay of the survival probability, and compute the dimension dependent constant c_d to leading order within an eps=2-d expansion.Comment: 16 pages, to appear in J. Phys.

    Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory

    Full text link
    Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimension are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation and identifies the scaling exponents governing the low energy, Luttinger liquid behavior. For the stochastic particle model we develop a hydrodynamic fluctuation theory, through which in some cases the large distance Gaussian fluctuations are proved nonperturbatively

    Microscopic Theory of Magnon-Drag Thermoelectric Transport in Ferromagnetic Metals

    Full text link
    A theoretical study of the magnon-drag Peltier and Seebeck effects in ferromagnetic metals is presented. A magnon heat current is described perturbatively from the microscopic viewpoint with respect to electron--magnon interactions and the electric field. Then, the magnon-drag Peltier coefficient \Pi_\MAG is obtained as the ratio between the magnon heat current and the electric charge current. We show that \Pi_\MAG=C_\MAG T^{5/2} at a low temperature TT; that the coefficient C_\MAG is proportional to the spin polarization PP of the electric conductivity; and that P>0P>0 for C_\MAG<0, but P0P0. From experimental results for magnon-drag Peltier effects, we estimate that the strength of the electron--magnon interaction is about 0.3 eVâ‹…AËš3/2\cdot\AA^{3/2} for permalloy.Comment: 3 pages, 2 figures, accepted for publication in Journal of the Physical Society of Japa

    Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices

    Full text link
    In this paper we present calculations on the electronic band structure of a two-dimensional lateral superlattice subject to a perpendicular magnetic field by employing a projection operator technique based on the ray-group of magnetotranslation operators. We construct a new basis of appropriately symmetrized Bloch-like wavefunctions as linear combination of well-localized magnetic-Wannier functions. The magnetic field was consistently included in the Wannier functions defined in terms of free-electron eigenfunctions in the presence of external magnetic field in the symmetric gauge. Using the above basis, we calculate the magnetic energy spectrum of electrons in a lateral superlattice with bi-directional weak electrostatic modulation. Both a square lattice and a triangular one are considered as special cases. Our approach based on group theory handles the cases of integer and rational magnetic fluxes in a uniform way and the provided basis could be convenient for further both analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
    • …
    corecore