56,171 research outputs found

    Closed-shell properties of 24^{24}O with {\em ab initio} coupled-cluster theory

    Full text link
    We present an \emph{ab initio} calculation of spectroscopic factors for neutron and proton removal from 24^{24}O using the coupled-cluster method and a state-of-the-art chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order. In order to account for the coupling to the scattering continuum we use a Berggren single-particle basis that treats bound, resonant, and continuum states on an equal footing. We report neutron removal spectroscopic factors for the 23^{23}O states Jπ=1/2+J^{\pi} = 1/2^+, 5/2+5/2^+, 3/2−3/2^- and 1/2−1/2^-, and proton removal spectroscopic factors for the 23^{23}N states 1/2−1/2^- and 3/2−3/2^-. Our calculations support the accumulated experimental evidence that 24^{24}O is a closed-shell nucleus.Comment: 5 pages, 2 figures, 1 tabl

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that Bh∼Aκh/hB_h \sim A \kappa^h /h and we estimate that the growth constant κ=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    Gamow shell-model calculations of drip-line oxygen isotopes

    Full text link
    We employ the Gamow shell model (GSM) to describe low-lying states of the oxygen isotopes 24O and 25O. The many-body Schrodinger equation is solved starting from a two-body Hamiltonian defined by a renormalized low-momentum nucleon-nucleon (NN) interaction, and a spherical Berggren basis. The Berggren basis treats bound, resonant, and continuum states on an equal footing, and is therefore an appropriate representation of loosely bound and unbound nuclear states near threshold. We show that such a basis is necessary in order to obtain a detailed and correct description of the low-lying 1+ and 2+ excited states in 24O. On the other hand, we find that a correct description of binding energy systematics of the ground states is driven by proper treatment and inclusion of many-body correlation effects. This is supported by the fact that we get 25O unstable with respect to 24O in both oscillator and Berggren representations starting from a 22O core. Furthermore, we show that the structure of these loosely bound or unbound isotopes are strongly influenced by the 1S0 component of the NN interaction. This has important consequences for our understanding of nuclear stability.Comment: 5 pages, 3 figure

    Time delay as a key to Apoptosis Induction in the p53 Network

    Full text link
    A feedback mechanism that involves the proteins p53 and mdm2, induces cell death as a controled response to severe DNA damage. A minimal model for this mechanism demonstrates that the respone may be dynamic and connected with the time needed to translate the mdm2 protein. The response takes place if the dissociation constant k between p53 and mdm2 varies from its normal value. Although it is widely believed that it is an increase in k that triggers the response, we show that the experimental behaviour is better described by a decrease in the dissociation constant. The response is quite robust upon changes in the parameters of the system, as required by any control mechanism, except for few weak points, which could be connected with the onset of cancer

    Quenching of spectroscopic factors for proton removal in oxygen isotopes

    Full text link
    We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal from the closed-shell oxygen isotopes 14,16,22,24,28^{14,16,22,24,28}O with the chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a Hartree-Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and continuum states on an equal footing. We find a significant quenching of spectroscopic factors in the neutron-rich oxygen isotopes, pointing to enhanced many-body correlations induced by strong coupling to the scattering continuum above the neutron emission thresholds.Comment: 3 figure

    Generalized contour deformation method in momentum space: two-body spectral structures and scattering amplitudes

    Full text link
    A generalized contour deformation method (GCDM) which combines complex rotation and translation in momentum space, is discussed. GCDM gives accurate results for bound, virtual (antibound), resonant and scattering states starting with a realistic nucleon-nucleon interaction. It provides a basis for full off-shell tt-matrix calculations both for real and complex input energies. Results for both spectral structures and scattering amplitudes compare perfectly well with exact values for the separable Yamaguchi potential. Accurate calculation of virtual states in the Malfliet-Tjon and the realistic CD-Bonn nucleon-nucleon interactions are presented. GCDM is also a promising method for the computation of in-medium properties such as the resummation of particle-particle and particle-hole diagrams in infinite nuclear matter. Implications for in-medium scattering are discussed.Comment: 15 pages, revte

    Connecting the Micro-dynamics to the Emergent Macro-variables: Self-Organized Criticality and Absorbing Phase Transitions in the Deterministic Lattice Gas

    Full text link
    We reinvestigate the Deterministic Lattice Gas introduced as a paradigmatic model of the 1/f spectra (Phys. Rev. Lett. V26, 3103 (1990)) arising according to the Self-Organized Criticality scenario. We demonstrate that the density fluctuations exhibit an unexpected dependence on systems size and relate the finding to effective Langevin equations. The low density behavior is controlled by the critical properties of the gas at the absorbing state phase transition. We also show that the Deterministic Lattice Gas is in the Manna universality class of absorbing state phase transitions. This is in contrast to expectations in the literature which suggested that the entirely deterministic nature of the dynamics would put the model in a different universality class. To our knowledge this is the first fully deterministic member of the Manna universality class.Comment: 8 pages, 12 figures. Changes in the new version: Reference list has been correcte
    • …
    corecore