4 research outputs found

    Ethical investing and capital structure

    No full text
    We test the relevance of the trade-off, pecking order, and market timing theories of capital structure from the point of view of a stock's religious orientation. Using a unique sample of Islamic stocks, we discover the leverage speed of adjustment (SOA) to be faster compared to that in the literature on conventional stocks, consistent with trade-off theory. We hypothesize that this result is due to the risk-sharing principal of Islamic investments that substantially reduces market imperfections. The inclusion of variables belonging to other theories of capital structure does not change the SOA, implying the importance of the trade-off theory

    Climate change impacts on techno-economic performance of roof PV solar system in Australia

    No full text
    The techno-economic performance of roof PV solar system depends on local climatic conditions. The energy conversion behavior of PV system will change as a result of the new solar irradiation data caused by climate change. This study aims to investigate the quantified impacts of climate change on the future performance of PV roof system with a general electricity load and legal maximum size of solar array. In this study, the morphing method is employed to predict the future hourly mean global solar irradiation data for the year 2030, 2050 and 2070. By using the current and future solar irradiation data as the inputs, a simulation model of PV system is built to simulate the long-term implementation of the systems in the capital cities of Australian states. The solutions of the model given by computer programme, includes the system's electricity generation, greenhouse gas emissions, and cost of energy are analysed, and all the solutions are compared between different climatic conditions of all the capital cities. It is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of solar irradiation from 2030 to 2070. For the PV system in the majority of cities, a 10-20% increase of economic costs between the 2030 and 2050 climate scenario would be required. It is also found that the Hoba system has the best techno-economic performance with the lowest economic costs and higher renewable fraction, at both current climate and future climate. © 2015 Elsevier Ltd

    Physical and hybrid modelling techniques for earth-air heat exchangers in reducing building energy consumption: Performance, applications, progress, and challenges

    No full text
    Noteworthy advancements are seen in developing the earth-air heat exchanger (EAHE) models in the past several decades to reduce building energy consumption. However, it is still an ongoing challenge in selecting and implementing the most suitable and appropriate EAHE modelling technique in buildings based on the climates, performance, and limitations of the techniques. Therefore, this paper aims to review the published research related to the physical, and hybrid EAHE modelling techniques used in buildings, and highlight the prospects, benefits, progress, and challenges of these techniques. This is the first study that comprehensively evidences the prospects and technical challenges caused by unmeasured disturbances, assumptions, or the uncertainties generated in experimental and numerical works of all EAHE modelling techniques. Nevertheless, this study found that hybrid modelling is more effective than physical models for accurate prediction. On the contrary, the hybrid models suffer from high complexity if EAHE operating conditions and all key parameters are considered during the model development. Regarding the generalization capability, the physical models offer improved performance followed by the hybrid models. A minimum number of training data is needed for developing physical models, whereas medium training data is required for the hybrid models. The outcome of this study also provides valuable information regarding the physical and hybrid EAHE modelling techniques to the scientists, researchers, and so on in adopting the most appropriate EAHE modelling technique for their climates
    corecore