70 research outputs found

    On the geometry of a class of N-qubit entanglement monotones

    Full text link
    A family of N-qubit entanglement monotones invariant under stochastic local operations and classical communication (SLOCC) is defined. This class of entanglement monotones includes the well-known examples of the concurrence, the three-tangle, and some of the four, five and N-qubit SLOCC invariants introduced recently. The construction of these invariants is based on bipartite partitions of the Hilbert space in the form C2N≃CL⊗Cl{\bf C}^{2^N}\simeq{\bf C}^L\otimes{\bf C}^l with L=2N−n≄l=2nL=2^{N-n}\geq l=2^n. Such partitions can be given a nice geometrical interpretation in terms of Grassmannians Gr(L,l) of l-planes in CL{\bf C}^L that can be realized as the zero locus of quadratic polinomials in the complex projective space of suitable dimension via the Plucker embedding. The invariants are neatly expressed in terms of the Plucker coordinates of the Grassmannian.Comment: 7 pages RevTex, Submitted to Physical Review

    On the geometry of four qubit invariants

    Get PDF
    The geometry of four-qubit entanglement is investigated. We replace some of the polynomial invariants for four-qubits introduced recently by new ones of direct geometrical meaning. It is shown that these invariants describe four points, six lines and four planes in complex projective space CP3{\bf CP}^3. For the generic entanglement class of stochastic local operations and classical communication they take a very simple form related to the elementary symmetric polynomials in four complex variables. Moreover, their magnitudes are entanglement monotones that fit nicely into the geometric set of nn-qubit ones related to Grassmannians of ll-planes found recently. We also show that in terms of these invariants the hyperdeterminant of order 24 in the four-qubit amplitudes takes a more instructive form than the previously published expressions available in the literature. Finally in order to understand two, three and four-qubit entanglement in geometric terms we propose a unified setting based on CP3{\bf CP}^3 furnished with a fixed quadric.Comment: 19 page

    The geometry of entanglement: metrics, connections and the geometric phase

    Full text link
    Using the natural connection equivalent to the SU(2) Yang-Mills instanton on the quaternionic Hopf fibration of S7S^7 over the quaternionic projective space HP1≃S4{\bf HP}^1\simeq S^4 with an SU(2)≃S3SU(2)\simeq S^3 fiber the geometry of entanglement for two qubits is investigated. The relationship between base and fiber i.e. the twisting of the bundle corresponds to the entanglement of the qubits. The measure of entanglement can be related to the length of the shortest geodesic with respect to the Mannoury-Fubini-Study metric on HP1{\bf HP}^1 between an arbitrary entangled state, and the separable state nearest to it. Using this result an interpretation of the standard Schmidt decomposition in geometric terms is given. Schmidt states are the nearest and furthest separable ones lying on, or the ones obtained by parallel transport along the geodesic passing through the entangled state. Some examples showing the correspondence between the anolonomy of the connection and entanglement via the geometric phase is shown. Connections with important notions like the Bures-metric, Uhlmann's connection, the hyperbolic structure for density matrices and anholonomic quantum computation are also pointed out.Comment: 42 page

    The band spectrum of periodic potentials with PT-symmetry

    Full text link
    A real band condition is shown to exist for one dimensional periodic complex non-hermitian potentials exhibiting PT-symmetry. We use an exactly solvable ultralocal periodic potential to obtain the band structure and discuss some spectral features of the model, specially those concerning the role of the imaginary parameters of the couplings. Analytical results as well as some numerical examples are provided.Comment: 14 pages, 19 included figures (13 coloured). Submitted to J. Phys.

    Correlation induced non-Abelian quantum holonomies

    Full text link
    In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the L\'{e}vay geometric phase [2004 {\it J. Phys. A: Math. Gen.} {\bf 37} 1821] in the case of two-qubit systems undergoing local SU(2) evolutions.Comment: Minor corrections; journal reference adde

    Reflectionless PT-symmetric potentials in the one-dimensional Dirac equation

    Full text link
    We study the one-dimensional Dirac equation with local PT-symmetric potentials whose discrete eigenfunctions and continuum asymptotic eigenfunctions are eigenfunctions of the PT operator, too: on these conditions the bound-state spectra are real and the potentials are reflectionless and conserve unitarity in the scattering process. Absence of reflection makes it meaningful to consider also PT-symmetric potentials that do not vanish asymptotically.Comment: 24 pages, to appear in J. Phys. A : Math. Theor; one acknowledgement and one reference adde

    Invariant and polynomial identities for higher rank matrices

    Full text link
    We exhibit explicit expressions, in terms of components, of discriminants, determinants, characteristic polynomials and polynomial identities for matrices of higher rank. We define permutation tensors and in term of them we construct discriminants and the determinant as the discriminant of order dd, where dd is the dimension of the matrix. The characteristic polynomials and the Cayley--Hamilton theorem for higher rank matrices are obtained there from

    Algebraic invariants of five qubits

    Full text link
    The Hilbert series of the algebra of polynomial invariants of pure states of five qubits is obtained, and the simplest invariants are computed.Comment: 4 pages, revtex. Short discussion of quant-ph/0506073 include

    Hyperdeterminants as integrable discrete systems

    Full text link
    We give the basic definitions and some theoretical results about hyperdeterminants, introduced by A. Cayley in 1845. We prove integrability (understood as 4d-consistency) of a nonlinear difference equation defined by the 2x2x2-hyperdeterminant. This result gives rise to the following hypothesis: the difference equations defined by hyperdeterminants of any size are integrable. We show that this hypothesis already fails in the case of the 2x2x2x2-hyperdeterminant.Comment: Standard LaTeX, 11 pages. v2: corrected a small misprint in the abstrac
    • 

    corecore