77 research outputs found

    "Cut wires grating – single longitudinal wire" planar metastructure to achieve microwave magnetic resonance in a single wire

    Get PDF
    Here we present metastructures containing cut-wire grating and a single longitudinal cut-wire orthogonal to grating’s wires. Experimental investigations at microwaves show these structures can provide strong magnetic resonant response of a single nonmagnetic cut-wire in dependence on configuration and sizes in the case when metastructures are oriented along the direction of wave propagation and cut-wires of grating are parallel to the electric field of a plane electromagnetic wave. It is suggested a concept of magnetic response based on antiparallel resonant currents excited by magnetic field of surface polaritons in many spatial LC-circuits created from cut-wire pairs of a grating and section of longitudinal cut-wire. Three separately observed resonant effects connected with grating, LC-circuits and with longitudinal cut-wire have been identified applying measurements in waveguides, cutoff waveguides and free space. To tune and mark resonance split cut-wires are loaded with varactor diodes

    Fluctuation Study of the Specific Heat of MgB2

    Full text link
    The specific heat of polycrystalline Mg11^{11}B2_{2} has been measured with high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The excess specific heat above Tc_{c} is discussed in terms of Gaussian fluctuations and suggests that Mg11^{11}B2_{2} is a bulk superconductor with Ginzburg-Landau coherence length Îľ0=26\xi_{0}=26 \AA . The transition-width broadening in field is treated in terms of lowest-Landau-level (LLL) fluctuations. That analysis requires that Îľ0=20\xi_{0}=20 \AA . The underestimate of the coherence length in field, along with deviations from 3D LLL predictions, suggest that there is an influence from the anisotropy of Bc2_{c2} between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002

    First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni

    Full text link
    Magnetic properties of Fe, Co, and Ni at finite temperatures have been investigated on the basis of the first-principles dynamical CPA (Coherent Potential Approximation) combined with the LDA (Local Density Approximation) + UU Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO) representation. The Hamiltonian includes the transverse spin fluctuation terms. Numerical calculations have been performed within the harmonic approximation with 4th-order dynamical corrections. Calculated single-particle densities of states in the ferromagnetic state indicate that the dynamical effects reduce the exchange splitting, suppress the band width of the quasi-particle state, and causes incoherent excitations corresponding the 6 eV satellites. Results of the magnetization vs temperature curves, paramagnetic spin susceptibilities, and the amplitudes of local moments are presented. Calculated Curie temperatures (TCT_{\rm C}) are reported to be 1930K for Fe, 2550K for Co, and 620K for Ni; TCT_{\rm C} for Fe and Co are overestimated by a factor of 1.8, while TCT_{\rm C} in Ni agrees with the experimental result. Effective Bohr magneton numbers calculated from the inverse susceptibilities are 3.0 ÎĽB\mu_{\rm B} (Fe), 3.0 ÎĽB\mu_{\rm B} (Co), and 1.6 ÎĽB\mu_{\rm B} (Ni), being in agreement with the experimental ones. Overestimate of TCT_{\rm C} in Fe and Co is attributed to the neglects of the higher-order dynamical effects as well as the magnetic short range order.Comment: 10 pages, 13 figure

    Nonreciprocal amplitude-frequency resonant response of metasandwiches “ferrite plate-grating of resonant elements”

    No full text
    New microwave nonreciprocal properties are investigated in “ferrite plate – grating of resonant elements” metasandwiches arranged along the axis of a rectangular waveguide in a transverse constant magnetic field. Giant nonreciprocity in the transmission is observed at the ferromagnetic resonance frequencies at certain values of the magnetic field under conditions of a mutual influence between the ferromagnetic and the grating resonances. In addition, nonreciprocal splitting of the resonance in grating elements is observed under small magnetic field, which is much less than the field necessary to the ferromagnetic resonance excitation. The nonreciprocal transmission does not take place in the case of free ferrite in the absence of a grating. Sign reversal of the nonreciprocity is observed, when ferrite transfers to the opposite side of a grating as well as under certain values of the constant magnetic field, when the sign reversal of difference between frequencies of the ferromagnetic resonance and the grating resonance takes place. Nonreciprocal effects are explained by the interaction between precessing spins in ferrite and a magnetic field of the surface wave, formed by a grating, and by coupling between the resonances of grating elements. It has been shown theoretically that microwaves in waveguide with bianisotropic layer, simulating a grating of resonant elements, are elliptically or circularly polarized with frequency and spatially – dependent rotating sense of the microwave magnetic field. The nonreciprocal effects have been observed for different grating elements: for both electric dipoles and chiral elements
    • …
    corecore