55 research outputs found

    Energy and exergy analysis of using turbulator in a parabolic trough solar collector filled with mesoporous silica modified with copper nanoparticles hybrid nanofluid

    Get PDF
    Designing the most efficient parabolic trough solar collector (PTSC) is still a demanding and challenging research area in solar energy systems. Two effective recommended methods for this purpose that increase the thermal characteristics of PTSCs are adding turbulators and nanofluids. To study the effects of the two approaches on the energy efficiency of PTSCs, a stainless steel turbulator was used and solid nanoparticles of Cu/SBA-15 were added to the water with the volume concentrations of 0.019% to 0.075%. The generated turbulence in the fluid flow was modeled by the SST k–ω turbulent model. The results in daylight demonstrated that energy efficiency increases steadily by 11:30 a.m., and then, starts to drop gradually due to more irradiations at noon. It was observed that applying the turbulator to the studied PTSC has a significant influence on the enhancement of energy efficiency. Adding the nanoparticles augmented the average Nusselt number inside the solar collector in various studied Reynolds numbers. It was also found that the increase in volume concentrations of nanoparticles enhances heat transfer regularly

    Evaporative cooling integrated with solid desiccant systems: a review

    Get PDF
    Evaporative cooling technology (ECT) has been deemed as an alternative to the conventional vapor-compression air conditioning system for dry climates in recent years due to its simple structure and low operating cost. Generally speaking, the ECT includes two types of different technologies, direct evaporative cooling (DEC) and indirect evaporative cooling (IEC). Both technologies can theoretically reduce the air temperature to the wet-bulb temperature of outdoor air. The major difference between these two technologies is that DEC will introduce extra moisture to the supply air while IEC will not. The enhanced IEC, Maisotsenko-cycle (M-cyle) IEC, can even bring down the air temperature to the dew point temperature. The ECT integrated with solid desiccant systems, i.e., solid desiccant-assisted evaporative cooling technologies (SDECT), could make the technology applicable to a wider range of weather conditions, e.g., weather with high humidity. In this paper, the recent development of various evaporative cooling technologies (ECT), solid desiccant material and the integration of these two technologies, the SDECT, were thoroughly reviewed with respect to their configuration, optimization and desiccant unit improvement. Furthermore, modeling techniques for simulating SDECT with their pros and cons were also reviewed. Potential opportunities and research recommendations were indicated, which include improving the structure and material of M-cycle IEC, developing novel desiccant material and optimizing configuration, water consumption rate and operation strategy of SDECT system. This review paper indicated that the SDECT system could be a potential replacement for the conventional vapor-compressed cooling system and could be applied in hot and humid environments with proper arrangements

    Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms

    Get PDF
    Purpose Fabrication of a suitable flow model or phantom is critical to the study of biomedical fluid dynamics using optical flow visualization and measurement methods. The main difficulties arise from the optical properties of the model material, accuracy of the geometry and ease of fabrication. Methods Conventionally an investment casting method has been used, but recently advancements in additive manufacturing techniques such as 3D printing have allowed the flow model to be printed directly with minimal post-processing steps. This study presents results of an investigation into the feasibility of fabrication of such models suitable for particle image velocimetry (PIV) using a common 3D printing Stereolithography process and photopolymer resin. Results An idealised geometry of a cerebral aneurysm was printed to demonstrate its applicability for PIV experimentation. The material was shown to have a refractive index of 1.51, which can be refractive matched with a mixture of de-ionised water with ammonium thiocyanate (NH4SCN). The images were of a quality that after applying common PIV pre-processing techniques and a PIV cross-correlation algorithm, the results produced were consistent within the aneurysm when compared to previous studies. Conclusions This study presents an alternative low-cost option for 3D printing of a flow phantom suitable for flow visualization simulations. The use of 3D printed flow phantoms reduces the complexity, time and effort required compared to conventional investment casting methods by removing the necessity of a multi-part process required with investment casting techniques
    • …
    corecore