132 research outputs found

    Nonparametric Bayesian Dereverberation of Power Spectrograms Based on Infinite-Order Autoregressive Processes

    Get PDF
    This paper describes a monaural audio dereverberation method that operates in the power spectrogram domain. The method is robust to different kinds of source signals such as speech or music. Moreover, it requires little manual intervention, including the complexity of room acoustics. The method is based on a non-conjugate Bayesian model of the power spectrogram. It extends the idea of multi-channel linear prediction to the power spectrogram domain, and formulates a model of reverberation as a non-negative, infinite-order autoregressive process. To this end, the power spectrogram is interpreted as a histogram count data, which allows a nonparametric Bayesian model to be used as the prior for the autoregressive process, allowing the effective number of active components to grow, without bound, with the complexity of data. In order to determine the marginal posterior distribution, a convergent algorithm, inspired by the variational Bayes method, is formulated. It employs the minorization-maximization technique to arrive at an iterative, convergent algorithm that approximates the marginal posterior distribution. Both objective and subjective evaluations show advantage over other methods based on the power spectrum. We also apply the method to a music information retrieval task and demonstrate its effectiveness

    Successful treatment of severe accidental hypothermia with cardiac arrest for a long time using cardiopulmonary bypass - report of a case

    Get PDF
    Accidental hypothermia is defined as an unintentional decrease in body temperature to below 35°C, and cases in which temperatures drop below 28°C are considered severe and have a high mortality rate. This study presents the case of a 57-year-old man discovered drifting at sea who was admitted to our hospital suffering from cardiac arrest. Upon admittance, an electrocardiogram indicated asystole, and the patient's temperature was 22°C. Thirty minutes of standard CPR and external rewarming were ineffective in raising his temperature. However, although he had been in cardiac arrest for nearly 2 h, it was decided to continue resuscitation, and a cardiopulmonary bypass (CPB) was initiated. CPB was successful in gradually rewarming the patient and restoring spontaneous circulation. After approximately 1 month of rehabilitation, the patient was subsequently discharged, displaying no neurological deficits. The successful recovery in this case suggests that CPB can be considered a useful way to treat severe hypothermia, particularly in those suffering from cardiac arrest

    Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice

    Get PDF
    Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing

    Diverging Mechanisms of Activation of Chemokine Receptors Revealed by Novel Chemokine Agonists

    Get PDF
    CXCL8/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation of CXCR1 and CXCR2 are distinct: the N-loop of CXCL8 is the major determinant for CXCR1 activation, whereas the N-terminus of CXCL8 (ELR and CXC) is essential for CXCR2 activation. We also found that activation of CXCR1 cross-desensitized CXCR2 responses in human neutrophils co-expressing both receptors, indicating that these novel CXCR1 agonists represent a new class of anti-inflammatory agents. Further, these selective CXCR1 agonists will aid at elucidating the functional significance of CXCR1 in vivo under pathophysiological conditions

    Cardiac involvement in Beagle-based canine X-linked muscular dystrophy in Japan (CXMD(J)): electrocardiographic, echocardiographic, and morphologic studies

    Get PDF
    BACKGROUND: Cardiac mortality in Duchenne muscular dystrophy (DMD) has recently become important, because risk of respiratory failure has been reduced due to widespread use of the respirator. The cardiac involvement is characterized by distinctive electrocardiographic abnormalities or dilated cardiomyopathy, but the pathogenesis has remained obscure. In research on DMD, Golden retriever-based muscular dystrophy (GRMD) has attracted much attention as an animal model because it resembles DMD, but GRMD is very difficult to maintain because of their severe phenotypes. We therefore established a line of dogs with Beagle-based canine X-linked muscular dystrophy in Japan (CXMD(J)) and examined the cardiac involvement. METHODS: The cardiac phenotypes of eight CXMD(J )and four normal male dogs 2 to 21 months of age were evaluated using electrocardiography, echocardiography, and histopathological examinations. RESULTS: Increases in the heart rate and decreases in PQ interval compared to a normal littermate were detected in two littermate CXMD(J )dogs at 15 months of age or older. Distinct deep Q-waves and increase in Q/R ratios in leads II, III, and aVF were detected by 6–7 months of age in all CXMD(J )dogs. In the echocardiogram, one of eight of CXMD(J )dogs showed a hyperechoic lesion in the left ventricular posterior wall at 5 months of age, but the rest had not by 6–7 months of age. The left ventricular function in the echocardiogram indicated no abnormality in all CXMD(J )dogs by 6–7 months of age. Histopathology revealed myocardial fibrosis, especially in the left ventricular posterobasal wall, in three of eight CXMD(J )dogs by 21 months of age. CONCLUSION: Cardiac involvement in CXMD(J )dogs is milder and has slower progression than that described in GRMD dogs. The distinct deep Q-waves have been ascribed to myocardial fibrosis in the posterobasal region of the left ventricle, but our data showed that they precede the lesion on echocardiogram and histopathology. These findings imply that studies of CXMD(J )may reveal not only another causative mechanism of the deep Q-waves but also more information on the pathogenesis in the dystrophin-deficient heart

    Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo

    Get PDF
    Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio

    RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015
    corecore