1,365 research outputs found

    CFD predictions of near-field pressure signatures of a low-boom aircraft

    Get PDF
    A three dimensional Euler marching code has been utilized to predict near-field pressure signatures of an aircraft with low boom characteristics. Computations were extended to approximately six body lengths aft of the aircraft in order to obtain pressure data at three body lengths below the aircraft for a cruise Mach number of 1.6. The near-field pressure data were extrapolated to the ground using a Whitham based method. The distance below the aircraft where the pressure data are attained is defined in this paper as the 'separation distance.' The influences of separation distances and the still highly three-dimensional flow field on the predicted ground pressure signatures and boom loudness are presented in this paper

    Robust Parameter Selection for Parallel Tempering

    Full text link
    This paper describes an algorithm for selecting parameter values (e.g. temperature values) at which to measure equilibrium properties with Parallel Tempering Monte Carlo simulation. Simple approaches to choosing parameter values can lead to poor equilibration of the simulation, especially for Ising spin systems that undergo 1st1^st-order phase transitions. However, starting from an initial set of parameter values, the careful, iterative respacing of these values based on results with the previous set of values greatly improves equilibration. Example spin systems presented here appear in the context of Quantum Monte Carlo.Comment: Accepted in International Journal of Modern Physics C 2010, http://www.worldscinet.com/ijmp

    On form-preserving transformations for the time-dependent Schr\"odinger equation

    Get PDF
    In this paper we point out a close connection between the Darboux transformation and the group of point transformations which preserve the form of the time-dependent Schr\"odinger equation (TDSE). In our main result, we prove that any pair of time-dependent real potentials related by a Darboux transformation for the TDSE may be transformed by a suitable point transformation into a pair of time-independent potentials related by a usual Darboux transformation for the stationary Schr\"odinger equation. Thus, any (real) potential solvable via a time-dependent Darboux transformation can alternatively be solved by applying an appropriate form-preserving transformation of the TDSE to a time-independent potential. The preeminent role of the latter type of transformations in the solution of the TDSE is illustrated with a family of quasi-exactly solvable time-dependent anharmonic potentials.Comment: LaTeX2e (with amsmath, amssymb, amscd, cite packages), 11 page

    Monosynaptic Functional Connectivity in Cerebral Cortex During Wakefulness and Under Graded Levels of Anesthesia

    Get PDF
    The balance between excitation and inhibition is considered to be of significant importance for neural computation and cognitive function. Excitatory and inhibitory functional connectivity in intact cortical neuronal networks in wakefulness and graded levels of anesthesia has not been systematically investigated. We compared monosynaptic excitatory and inhibitory spike transmission probabilities using pairwise cross-correlogram (CCG) analysis. Spikes were measured at 64 sites in the visual cortex of rats with chronically implanted microelectrode arrays during wakefulness and three levels of anesthesia produced by desflurane. Anesthesia decreased the number of active units, the number of functional connections, and the strength of excitatory connections. Connection probability (number of connections per number of active unit pairs) was unaffected until the deepest anesthesia level, at which a significant increase in the excitatory to inhibitory ratio of connection probabilities was observed. The results suggest that the excitatory–inhibitory balance is altered at an anesthetic depth associated with unconsciousness

    Is my ODE a Painleve equation in disguise?

    Full text link
    Painleve equations belong to the class y'' + a_1 {y'}^3 + 3 a_2 {y'}^2 + 3 a_3 y' + a_4 = 0, where a_i=a_i(x,y). This class of equations is invariant under the general point transformation x=Phi(X,Y), y=Psi(X,Y) and it is therefore very difficult to find out whether two equations in this class are related. We describe R. Liouville's theory of invariants that can be used to construct invariant characteristic expressions (syzygies), and in particular present such a characterization for Painleve equations I-IV.Comment: 8 pages. Based on talks presented at NEEDS 2000, Gokova, Turkey, 29 June - 7 July, 2000, and at the AMS-HKMS joint meeting 13-16 December, 2000. Submitted to J. Nonlin. Math. Phy

    Size-scaling of clump instabilities in turbulent, feedback regulated disks

    Full text link
    We explore the scaling between the size of star-forming clumps and rotational support in massively star-forming galactic disks. The analysis relies on simulations of a clumpy galaxy at z=2z=2 and the observed DYNAMO sample of rare clumpy analogs at z0.1z\approx0.1 to test a predictive clump size scaling proposed by \citet{Fisher2017ApJ...839L...5F} in the context of the Violent Disk Instability (VDI) theory. We here determine the clump sizes using a recently presented 2-point estimator, which is robust against resolution/noise effects, hierarchical clump substructure, clump-clump overlap and other galactic substructure. After verifying Fisher's clump scaling relation for the DYNAMO observations, we explore whether this relation remains characteristic of the VDI theory, even if realistic physical processes, such as local asymetries and stellar feedback, are included in the model. To this end, we rely on hydrodynamic zoom-simulations of a Milky Way-mass galaxy with four different feedback prescriptions. We find that, during its marginally stable epoch at z=2z=2, this mock galaxy falls on the clump scaling relation, although its position on this relation depends on the feedback model. This finding implies that Toomre-like stability considerations approximately apply to large (kpc\sim\rm kpc) instabilities in marginally stable turbulent disks, irrespective of the feedback model, but also emphasizes that the global clump distribution of a turbulent disk depends strongly on feedback.Comment: Accepted by ApJ, no changes made. 11 pages, 4 figure

    From Dimensional Reduction of 4d Spin Foam Model to Adding Non-Gravitational Fields to 3d Spin Foam Model

    Full text link
    A Kaluza-Klein like approach for a 4d spin foam model is considered. By applying this approach to a model based on group field theory in 4d (TOCY model), and using the Peter-Weyl expansion of the gravitational field, reconstruction of new non gravitational fields and interactions in the action are found. The perturbative expansion of the partition function produces graphs colored with su(2) algebraic data, from which one can reconstruct a 3d simplicial complex representing space-time and its geometry; (like in the Ponzano-Regge formulation of pure 3d quantum gravity), as well as the Feynman graph for typical matter fields. Thus a mechanism for generation of matter and construction of new dimensions are found from pure gravity.Comment: 11 pages, no figure, to be published in International Journal of Geometric Methods in Modern Physic
    corecore