45 research outputs found
Representing Conversations for Scalable Overhearing
Open distributed multi-agent systems are gaining interest in the academic
community and in industry. In such open settings, agents are often coordinated
using standardized agent conversation protocols. The representation of such
protocols (for analysis, validation, monitoring, etc) is an important aspect of
multi-agent applications. Recently, Petri nets have been shown to be an
interesting approach to such representation, and radically different approaches
using Petri nets have been proposed. However, their relative strengths and
weaknesses have not been examined. Moreover, their scalability and suitability
for different tasks have not been addressed. This paper addresses both these
challenges. First, we analyze existing Petri net representations in terms of
their scalability and appropriateness for overhearing, an important task in
monitoring open multi-agent systems. Then, building on the insights gained, we
introduce a novel representation using Colored Petri nets that explicitly
represent legal joint conversation states and messages. This representation
approach offers significant improvements in scalability and is particularly
suitable for overhearing. Furthermore, we show that this new representation
offers a comprehensive coverage of all conversation features of FIPA
conversation standards. We also present a procedure for transforming AUML
conversation protocol diagrams (a standard human-readable representation), to
our Colored Petri net representation
Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach
Recent years are seeing an increasing need for on-line monitoring of teams of
cooperating agents, e.g., for visualization, or performance tracking. However,
in monitoring deployed teams, we often cannot rely on the agents to always
communicate their state to the monitoring system. This paper presents a
non-intrusive approach to monitoring by 'overhearing', where the monitored
team's state is inferred (via plan-recognition) from team-members' routine
communications, exchanged as part of their coordinated task execution, and
observed (overheard) by the monitoring system. Key challenges in this approach
include the demanding run-time requirements of monitoring, the scarceness of
observations (increasing monitoring uncertainty), and the need to scale-up
monitoring to address potentially large teams. To address these, we present a
set of complementary novel techniques, exploiting knowledge of the social
structures and procedures in the monitored team: (i) an efficient probabilistic
plan-recognition algorithm, well-suited for processing communications as
observations; (ii) an approach to exploiting knowledge of the team's social
behavior to predict future observations during execution (reducing monitoring
uncertainty); and (iii) monitoring algorithms that trade expressivity for
scalability, representing only certain useful monitoring hypotheses, but
allowing for any number of agents and their different activities to be
represented in a single coherent entity. We present an empirical evaluation of
these techniques, in combination and apart, in monitoring a deployed team of
agents, running on machines physically distributed across the country, and
engaged in complex, dynamic task execution. We also compare the performance of
these techniques to human expert and novice monitors, and show that the
techniques presented are capable of monitoring at human-expert levels, despite
the difficulty of the task
Robust Agent Teams via Socially-Attentive Monitoring
Agents in dynamic multi-agent environments must monitor their peers to
execute individual and group plans. A key open question is how much monitoring
of other agents' states is required to be effective: The Monitoring Selectivity
Problem. We investigate this question in the context of detecting failures in
teams of cooperating agents, via Socially-Attentive Monitoring, which focuses
on monitoring for failures in the social relationships between the agents. We
empirically and analytically explore a family of socially-attentive teamwork
monitoring algorithms in two dynamic, complex, multi-agent domains, under
varying conditions of task distribution and uncertainty. We show that a
centralized scheme using a complex algorithm trades correctness for
completeness and requires monitoring all teammates. In contrast, a simple
distributed teamwork monitoring algorithm results in correct and complete
detection of teamwork failures, despite relying on limited, uncertain
knowledge, and monitoring only key agents in a team. In addition, we report on
the design of a socially-attentive monitoring system and demonstrate its
generality in monitoring several coordination relationships, diagnosing
detected failures, and both on-line and off-line applications
Observation of large-scale multi-agent based simulations
The computational cost of large-scale multi-agent based simulations (MABS)
can be extremely important, especially if simulations have to be monitored for
validation purposes. In this paper, two methods, based on self-observation and
statistical survey theory, are introduced in order to optimize the computation
of observations in MABS. An empirical comparison of the computational cost of
these methods is performed on a toy problem
Integrating BDI agents with Agent-based simulation platforms
Agent-Based Models (ABMs) is increasingly being used for exploring and supporting decision making about social science scenarios involving modelling of human agents. However existing agent-based simulation platforms (e.g., SWARM, Repast) provide limited support for the simulation of more complex cognitive agents required by such scenarios. We present a framework that allows Belief-Desire Intention (BDI) cognitive agents to be embedded in an ABM system. Architecturally, this means that the "brains" of an agent can be modelled in the BDI system in the usual way, while the "body" exists in the ABM system. The architecture is exible in that the ABM can still have non-BDI agents in the simulation, and the BDI-side can have agents that do not have a physical counterpart (such as an organisation). The framework addresses a key integration challenge of coupling event-based BDI systems, with time-stepped ABM systems. Our framework is modular and supports integration off-the-shelf BDI systems with off-the-shelf ABM systems. The framework is Open Source, and all integrations and applications are available for use by the modelling community