45 research outputs found

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation

    Monitoring Teams by Overhearing: A Multi-Agent Plan-Recognition Approach

    Full text link
    Recent years are seeing an increasing need for on-line monitoring of teams of cooperating agents, e.g., for visualization, or performance tracking. However, in monitoring deployed teams, we often cannot rely on the agents to always communicate their state to the monitoring system. This paper presents a non-intrusive approach to monitoring by 'overhearing', where the monitored team's state is inferred (via plan-recognition) from team-members' routine communications, exchanged as part of their coordinated task execution, and observed (overheard) by the monitoring system. Key challenges in this approach include the demanding run-time requirements of monitoring, the scarceness of observations (increasing monitoring uncertainty), and the need to scale-up monitoring to address potentially large teams. To address these, we present a set of complementary novel techniques, exploiting knowledge of the social structures and procedures in the monitored team: (i) an efficient probabilistic plan-recognition algorithm, well-suited for processing communications as observations; (ii) an approach to exploiting knowledge of the team's social behavior to predict future observations during execution (reducing monitoring uncertainty); and (iii) monitoring algorithms that trade expressivity for scalability, representing only certain useful monitoring hypotheses, but allowing for any number of agents and their different activities to be represented in a single coherent entity. We present an empirical evaluation of these techniques, in combination and apart, in monitoring a deployed team of agents, running on machines physically distributed across the country, and engaged in complex, dynamic task execution. We also compare the performance of these techniques to human expert and novice monitors, and show that the techniques presented are capable of monitoring at human-expert levels, despite the difficulty of the task

    Robust Agent Teams via Socially-Attentive Monitoring

    Full text link
    Agents in dynamic multi-agent environments must monitor their peers to execute individual and group plans. A key open question is how much monitoring of other agents' states is required to be effective: The Monitoring Selectivity Problem. We investigate this question in the context of detecting failures in teams of cooperating agents, via Socially-Attentive Monitoring, which focuses on monitoring for failures in the social relationships between the agents. We empirically and analytically explore a family of socially-attentive teamwork monitoring algorithms in two dynamic, complex, multi-agent domains, under varying conditions of task distribution and uncertainty. We show that a centralized scheme using a complex algorithm trades correctness for completeness and requires monitoring all teammates. In contrast, a simple distributed teamwork monitoring algorithm results in correct and complete detection of teamwork failures, despite relying on limited, uncertain knowledge, and monitoring only key agents in a team. In addition, we report on the design of a socially-attentive monitoring system and demonstrate its generality in monitoring several coordination relationships, diagnosing detected failures, and both on-line and off-line applications

    Observation of large-scale multi-agent based simulations

    Full text link
    The computational cost of large-scale multi-agent based simulations (MABS) can be extremely important, especially if simulations have to be monitored for validation purposes. In this paper, two methods, based on self-observation and statistical survey theory, are introduced in order to optimize the computation of observations in MABS. An empirical comparison of the computational cost of these methods is performed on a toy problem

    Integrating BDI agents with Agent-based simulation platforms

    Get PDF
    Agent-Based Models (ABMs) is increasingly being used for exploring and supporting decision making about social science scenarios involving modelling of human agents. However existing agent-based simulation platforms (e.g., SWARM, Repast) provide limited support for the simulation of more complex cognitive agents required by such scenarios. We present a framework that allows Belief-Desire Intention (BDI) cognitive agents to be embedded in an ABM system. Architecturally, this means that the "brains" of an agent can be modelled in the BDI system in the usual way, while the "body" exists in the ABM system. The architecture is exible in that the ABM can still have non-BDI agents in the simulation, and the BDI-side can have agents that do not have a physical counterpart (such as an organisation). The framework addresses a key integration challenge of coupling event-based BDI systems, with time-stepped ABM systems. Our framework is modular and supports integration off-the-shelf BDI systems with off-the-shelf ABM systems. The framework is Open Source, and all integrations and applications are available for use by the modelling community

    Swarm robotics: a review from the swarm engineering perspective

    Full text link

    Dynamic Role Assignment for Multi-agent Cooperation

    No full text
    corecore