55 research outputs found
Fully Automatic Expression-Invariant Face Correspondence
We consider the problem of computing accurate point-to-point correspondences
among a set of human face scans with varying expressions. Our fully automatic
approach does not require any manually placed markers on the scan. Instead, the
approach learns the locations of a set of landmarks present in a database and
uses this knowledge to automatically predict the locations of these landmarks
on a newly available scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model and the newly available
scan. To accurately fit the expression of the template to the expression of the
scan, we use as template a blendshape model. Our algorithm was tested on a
database of human faces of different ethnic groups with strongly varying
expressions. Experimental results show that the obtained point-to-point
correspondence is both highly accurate and consistent for most of the tested 3D
face models
Shape description and matching using integral invariants on eccentricity transformed images
Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately
Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations
International audienceThis paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches
- …