2,779 research outputs found

    Probing black holes in non-perturbative gauge theory

    Full text link
    We use a 0-brane to probe a ten-dimensional near-extremal black hole with N units of 0-brane charge. We work directly in the dual strongly-coupled quantum mechanics, using mean-field methods to describe the black hole background non-perturbatively. We obtain the distribution of W boson masses, and find a clear separation between light and heavy degrees of freedom. To localize the probe we introduce a resolving time and integrate out the heavy modes. After a non-trivial change of coordinates, the effective potential for the probe agrees with supergravity expectations. We compute the entropy of the probe, and find that the stretched horizon of the black hole arises dynamically in the quantum mechanics, as thermal restoration of unbroken U(N+1) gauge symmetry. Our analysis of the quantum mechanics predicts a correct relation between the horizon radius and entropy of a black hole.Comment: 30 pages, LaTeX, 8 eps figures. v2: references added. v3: more reference

    Thermal diffractive corrections to Casimir energies

    Full text link
    We study the interplay of thermal and diffractive effects in Casimir energies. We consider plates with edges, oriented either parallel or perpendicular to each other, as well as a single plate with a slit. We compute the Casimir energy at finite temperature using a formalism in which the diffractive effects are encoded in a lower dimensional non-local field theory that lives in the gap between the plates. The formalism allows for a clean separation between direct or geometric effects and diffractive effects, and makes an analytic derivation of the temperature dependence of the free energy possible. At low temperatures, with Dirichlet boundary conditions on the plates, we find that diffractive effects make a correction to the free energy which scales as T^6 for perpendicular plates, as T^4 for slits, and as T^4 log T for parallel plates.Comment: 31 pages, 7 figures, LaTeX. v2: minor typos fixed, version to appear in PR

    Anisotropy beta functions

    Get PDF
    The flow of couplings under anisotropic scaling of momenta is computed in Ï•3\phi^3 theory in 6 dimensions. It is shown that the coupling decreases as momenta of two of the particles become large, keeping the third momentum fixed, but at a slower rate than the decrease of the coupling if all three momenta become large simultaneously. This effect serves as a simple test of effective theories of high energy scattering, since such theories should reproduce these deviations from the usual logarithmic scale dependence.Comment: uuencoded ps file, 6 page

    A Note on Hartle-Hawking Vacua

    Get PDF
    The purpose of this note is to establish the basic properties--- regularity at the horizon, time independence, and thermality--- of the generalized Hartle-Hawking vacua defined in static spacetimes with bifurcate Killing horizon admitting a regular Euclidean section. These states, for free or interacting fields, are defined by a path integral on half the Euclidean section. The emphasis is on generality and the arguments are simple but formal.Comment: 5 pages, LaTe

    A Comment on Zero-brane Quantum Mechanics

    Full text link
    We consider low energy, non-relativistic scattering of two Dirichlet zero-branes as an exercise in quantum mechanics. For weak string coupling and sufficiently small velocity, the dynamics is governed by an effective U(2) gauge theory in 0+1 dimensions. At low energies, D-brane scattering can reliably probe distances much shorter than the string scale. The only length scale in the quantum mechanics problem is the eleven dimensional Planck length. This provides evidence for the role of scales shorter than the string length in the weakly coupled dynamics of type IIA strings.Comment: 9 pages, harvmac, improved treatment of 2+1 proble
    • …
    corecore