27 research outputs found

    A Proof of Concept Study on Real-Pime LiMAx CYP1A2 Liver Function Assessment of Donor Grafts During Normothermic Machine Perfusion

    Get PDF
    No single reliable parameter exists to assess liver graft function of extended criteria donors during ex-vivo normothermic machine perfusion (NMP). The liver maximum capacity (LiMAx) test is a clinically validated cytochromal breath test, measuring liver function based on 13CO2 production. As an innovative concept, we aimed to integrate the LiMAx breath test with NMP to assess organ function. Eleven human livers were perfused using NMP. After one hour of stabilization, LiMAx testing was performed. Injury markers (ALT, AST, miR-122, FMN, and Suzuki-score) and lactate clearance were measured and related to LiMAx values. LiMAx values ranged between 111 and 1838 µg/kg/h, and performing consecutive LiMAx tests during longer NMP was feasible. No correlation was found between LiMAx value and miR-122 and FMN levels in the perfusate. However, a significant inverse correlation was found between LiMAx value and histological injury (Suzuki-score, R = − 0.874, P < 0.001), AST (R = − 0.812, P = 0.004) and ALT (R = − 0.687, P = 0.028). Furthermore, a significant correlation was found with lactate clearance (R = 0.683, P = 0.043). We demonstrate, as proof of principle, that liver function during NMP can be quantified using the LiMAx test, illustrating a positive correlation with traditional injury markers. This new breath-test application separates livers with adequate cytochromal liver function from inadequate ones and may support decision-making in the safe utilization of extended criteria donor grafts

    Optimization of an in vitro assay methodology for competitive binding of thyroidogenic xenobiotics with thyroxine on human transthyretin and albumin

    Get PDF
    Thyroid hormones (THs) are involved in the regulation of many physiological processes in vertebrates. Competition for TH binding sites on serum transport proteins can interfere with delivery of THs to target tissues, and this is a potential mechanism of action of exogenous thyroidogenic substances. To date, detailed accounts of in vitro methods for competitive binding with THs on TH transport proteins (human or wildlife) are sparse. In the limited number of published studies on in vitro radio-labelled TH-TH transport protein interactions, method descriptions were brief and with insufficient details for successful replication. Furthermore, upon review of these methodologies, we identified several opportunities for optimization. The present study addresses the methodological deficiencies and describes, in detail, a fully optimized and validated competitive T4 radio-ligand binding assay with human transthyretin (TTR) and albumin (ALB). • Significant improvements were made over previous methods, including better maintenance of protein stability and enhanced measurement of competition between different ligands.• Sample size was reduced to allow use of small pre-packed size exclusion chromatography columns, which eliminates the rinsing step during the separation procedure.• The assay was parameterized for use with T4 and human TTR and ALB

    Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro

    No full text
    The toxicological properties of organophosphate (OP) triesters that are used as flame retardants and plasticizers are currently not well understood, though increasing evidence suggests they can affect the thyroid system. Perturbation of thyroid hormone (TH) transport is one mechanism of action that may affect thyroid function. The present study applied an in vitro competitive protein binding assay with thyroxine (T4) and human transthyretin (hTTR) transport protein to determine the potential for the OP triesters, TDCIPP (tris(1,3-dichloro-2-propyl) phosphate), TBOEP (tris(butoxyethyl) phosphate), TEP (triethyl phosphate), TPHP (triphenyl phosphate), p-OH-TPHP (para-hydroxy triphenyl phosphate), and the OP diester DPHP (diphenyl phosphate), to competitively displace T4 from hTTR. Enhancement of T4 binding to hTTR, rather than the hypothesized competition, was observed for the six OP esters and in a concentration-dependent manner. For example, T4-hTTR binding was significantly increased at concentrations of TBOEP as low as 64 nM, and up to 184% of controls at 5000 nM. A plausible explanation of these results, which to our knowledge has not been previously reported, may be allosteric interactions of the OP esters with hTTR allowing T4 to access the second site of the TH binding pocket. These in vitro results suggest a novel mechanism of OP ester toxicity via T4 binding enhancement, and possible dysregulation of T4-hTTR interactions

    High room temperature peak-to-valley current ratio in Si based Esaki diodes

    No full text

    Plasma-activated direct bonding of coated optical glasses

    No full text
    For spectrometric applications in space the benefits of direct bonding are highly promising. However, direct bonding of optical coatings is still challenging. This work presents investigations on plasma-activated direct bonding of optical glasses without and with added optical coatings. Gained technologies will be used for novel coated prism spectrometers
    corecore