1,634 research outputs found

    High-temperature excess current and quantum suppression of electronic backscattering in a 1-D system

    Full text link
    We consider the electronic current through a one-dimensional conductor in the ballistic transport regime and show that the quantum oscillations of a weakly pinned single scattering target results in a temperature- and bias-voltage independent excess current at large bias voltages. This is a genuine effect on transport that derives from an exponential reduction of electronic backscattering in the elastic channel due to quantum delocalization of the scatterer and from suppression of low-energy electron backscattering in the inelastic channels caused by the Pauli exclusion principle. We show that both the mass of the target and the frequency of its quantum vibrations can be measured by studying the differential conductance and the excess current. We apply our analysis to the particular case of a weakly pinned C60 molecule encapsulated by a single-wall carbon nanotube and find that the discussed phenomena are experimentally observable.Comment: 4 pages, 4 figure

    REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    Get PDF
    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decreased to about 20 kV, and an axial potential barrier is lowered to allow the now highly charged ions to be extracted from the EBIS at an energy matching the requirement of the Radio Frequency Quadrupole (RFQ). Several different topics are presented in this report, all connected with the design and construction of an EBIS. Old 'truths' have also been scrutinised, for instance alignment tolerances. A large part is devoted to the description of a novel EBIS simulation implementation. A complete injection, breeding and extraction cycle has been simulated to certify high injection and extraction efficiencies. The entire EBIS was modelled in an ion-tracing program called SIMION, and the accepted and emitted phase spaces were determined. Beam optics parameters such as lens positions, voltages, accepted beam-tilt and displacement tolerances at the focal points were also settled using SIMION. An analytically derived acceptance formula was verified with simulations, and general conclusions on acceptance, emittance and energy spread of an EBIS are presented in this report. Any possible correlation between the two transverse phase spaces was shown to be insignificant. Furthermore, continuous injection, and maximal obtainable efficiency for such an injection mode were studied theoretically. The electron reflection and back-scattering in the collector was simulated using a combination of EGUN and SIMION. The result showed that a much lower degree of electron back-scattering may be obtained with this design as compared to previously published estimations. Furthermore, the Penning trapping of electrons at the trap barrier (or the post anode) was addressed, and techniques to avoid it were evaluated. Vacuum considerations for residual gas in the warm-bore magnet chamber, and the back-flow of Ar cooling gas from the Penning trap, have also been addressed since there is a risk of outnumbering the small number of radioactive ions. Simulated extraction spectra for different pressure scenarios are presented. All different REXEBIS elements (magnet, electron gun, inner structure, collector etc) are described from a design and performance perspective, and preliminary investigations of the platform high voltage switching and the beam diagnostics are included as well. A very elegant and simple method to align the solenoid within the iron yoke was developed and used. The high experimental emittance value obtained for electron beam ion source at MSL in Stockholm (4 times larger than the absolute upper theoretical value) was reproduced in simulations and could be justified by aberrations in the small einzel lens following the collector. The result of this simulation also verified the validity of the developed EBIS code

    Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot

    Get PDF
    Magneto-polaronic effects are considered in electron transport through a single-level vibrating quantum dot subjected to a transverse (to the current flow) magnetic field. It is shown that the effects are most pronounced in the regime of sequential electron tunneling, where a polaronic blockade of the current at low temperatures and an anomalous temperature dependence of the magnetoconductance are predicted. In contrast, for resonant tunneling of polarons the peak conductance is not affected by the magnetic field.Comment: 7 pages, 2 figure

    The Influence of Electro-Mechanical Effects on Resonant Electron Tunneling Through Small Carbon Nano-Peapods

    Full text link
    The influence of a fullerene molecule trapped inside a single-wall carbon nanotube on resonant electron transport at low temperatures and strong polaronic coupling is theoretically discussed. Strong peak to peak fluctuations and anomalous temperature behavior of conductance amplitudes are predicted and investigated. The influence of the chiral properties of carbon nanotubes on transport is also studied.Comment: 17 pages, 3 figures. Replaced with published version. Important changes. Open access: http://stacks.iop.org/1367-2630/10/04304

    Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel of a two-dimensional electron gas

    Full text link
    We present an analytical expression for the static many-body local field factor G+(q)G_{+}(q) of a homogeneous two-dimensional electron gas, which reproduces Diffusion Monte Carlo data and embodies the exact asymptotic behaviors at both small and large wave number qq. This allows us to also provide a closed-form expression for the exchange and correlation kernel Kxc(r)K_{xc}(r), which represents a key input for density functional studies of inhomogeneous systems.Comment: 5 pages, 3 figure

    Giant lasing effect in magnetic nanoconductors

    Full text link
    We propose a new principle for a compact solid-state laser in the 1-100 THz regime. This is a frequency range where attempts to fabricate small size lasers up till now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another -- the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization we show the laser frequency to be in the range 1-100 THz. The optical gain is estimated to be of order 10^7 cm^{-1}, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.Comment: 4 pages, 3 figure

    Theory of Thermoelectric Power in High-Tc Superconductors

    Full text link
    We present a microscopic theory for the thermoelectric power (TEP) in high-Tc cuprates. Based on the general expression for the TEP, we perform the calculation of the TEP for a square lattice Hubbard model including all the vertex corrections necessary to satisfy the conservation laws. In the present study, characteristic anomalous temperature and doping dependences of the TEP in high-Tc cuprates, which have been a long-standing problem of high-Tc cuprates, are well reproduced for both hole- and electron-doped systems, except for the heavily under-doped case. According to the present analysis, the strong momentum and energy dependences of the self-energy due to the strong antiferromagnetic fluctuations play an essential role in reproducing experimental anomalies of the TEP.Comment: 5 pages, 8 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.10. Figure 2 has been revise
    corecore