24 research outputs found

    Phreatomagmatic eruptive centre from the Deccan Trap Province, Jabalpur, Central India

    Get PDF
    Three volcanic vents in the Deccan Trap Province have been found 15 km SE of Jabalpur near Barela. They are close to a ENE striking lineament in the Narbada valley. The small diameter of the vents (60 to 80 m), low relief, highly granulated nature of the pyroclastic fill of the vents, lapilli and coarse to fine, ash grain size, nonvesicularity of the lapilli fragments, abundance of sideromelane over tachylite - all suggest that these vents represent sites of phreatomagmatic eruption

    LinksB2N: Automatic Data Integration for the Semantic Web

    No full text

    Synthesis and in vitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors

    No full text
    Two new piperazinyl-ureido single ring aryl sulfamate-based inhibitor series were designed against the emerging oncology drug target steroid sulfatase (STS), for which there are existing potent steroidal and non-steroidal agents in clinical trials. 4-(Piperazinocarbonyl)aminosulfamates (5-31) were obtained by reacting 4-hydroxyarylamines with phenylchloroformate, subsequent sulfamoylation of the resulting hydroxyarylcarbamates and coupling of the product with 1-substituted piperazines. Pyrimidinyl-piperazinourea sulfamates (35-42) were synthesized by pyrimidine ring closure of 4-Boc-piperazine-1-carboxamidine with 3-(dimethylamino)propenones, deprotection and coupling with the sulfamoylated building block. Target ureidosulfamates 5-31 and 35-42 were evaluated both as STS inhibitors in vitro using a lysate of JEG-3 human placenta choriocarcinoma cell line and in a whole cell assay. SAR conclusions were drawn from both series. In series 35-42 the best inhibitory activity is related to the presence of a benzofuryl on the pyrimidine ring. In series 5-31 the best inhibitory activity was shown by the ureas bearing 4-chlorophenyl, 3,4-dichlorophenyl groups or aliphatic chains at the piperazino 4-nitrogen displaying IC50 in the 33-94 nM concentration range. Final optimization to the low nanomolar level was achieved through substitution of the arylsulfamate ring with halogens. Four halogenated arylsulfamates of high potency were achieved and two of these 19 and 20 had IC50 values of 5.1 and 8.8 nM respectively and are attractive for potential in vivo evaluation and further development. We demonstrate the optimization of this new series to low nanomolar potency, employing fluorine substitution, providing potent membrane permeant inhibitors with further development potential indicating piperazinyl-ureido aryl sulfamate derivatives as an attractive new class of STS inhibitors

    Synthesis and in vitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors

    No full text
    Two new piperazinyl-ureido single ring aryl sulfamate-based inhibitor series were designed against the emerging oncology drug target steroid sulfatase (STS), for which there are existing potent steroidal and non-steroidal agents in clinical trials. 4-(Piperazinocarbonyl)aminosulfamates (5e31) were obtained by reacting 4-hydroxyarylamines with phenylchloroformate, subsequent sulfamoylation of the resulting hydroxyarylcarbamates and coupling of the product with 1-substituted piperazines. Pyrimidinylpiperazinourea sulfamates (35e42) were synthesized by pyrimidine ring closure of 4-Boc-piperazine- 1-carboxamidine with 3-(dimethylamino)propenones, deprotection and coupling with the sulfamoylated building block. Target ureidosulfamates 5e31 and 35e42 were evaluated both as STS inhibitors in vitro using a lysate of JEG-3 human placenta choriocarcinoma cell line and in a whole cell assay. SAR conclusions were drawn from both series. In series 35e42 the best inhibitory activity is related to the presence of a benzofuryl on the pyrimidine ring. In series 5e31 the best inhibitory activity was shown by the ureas bearing 4-chlorophenyl, 3,4-dichlorophenyl groups or aliphatic chains at the piperazino 4- nitrogen displaying IC50 in the 33e94 nM concentration range. Final optimization to the low nanomolar level was achieved through substitution of the arylsulfamate ring with halogens. Four halogenated arylsulfamates of high potency were achieved and two of these 19 and 20 had IC50 values of 5.1 and 8.8 nM respectively and are attractive for potential in vivo evaluation and further development. We demonstrate the optimization of this new series to low nanomolar potency, employing fluorine substitution, providing potent membrane permeant inhibitors with further development potential indicating piperazinyl-ureido aryl sulfamate derivatives as an attractive new class of STS inhibitors

    Semi-conducting Ni/Zn nano-hybrids’ driven efficient electro-catalytic performance: fabrication, characterization, and electrochemical features’ elucidation

    No full text
    The current work reports the synthesis, analytical evaluation, and electrochemical performance investigation of green bio-factories’ triggered mixed metal oxides’ nano-hybrids comprising of nickel (Ni) and zinc (Zn) for the first time. Modified sol–gel synthetic route used for the synthesis of NiO/ZnO green nano-hybrids ([NiO/ZnO]-GNH) is devoid of utilization of any chemical-reducing agents. Efficient [NiO/ZnO]-GNH electro-catalysts were characterized for various aspects using Fourier transform infra-red spectroscopy (FT-IR), gas chromatography and mass spectrometry (GC-MS), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron micrographs (FE-SEM), UV-Visible spectrophotometry (UV-Vis), and X-ray photoelectron spectroscopy (XPS). Oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) steps of water splitting reactions were evaluated via linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) via fabrication of modified Ni-foam electrode through decoration of [NiO/ZnO]-GNH. The as-synthesized [NiO/ZnO]-GNH promises electro-catalytic performance with a small over-potential of 0.42 V and 264 mV for OER and HER, respectively, for the achievement of a current density of 10 mA/cm2. Results of the current work can be extended to the practical scale adoption of the fabricated electro-catalysts through optimized investigation and economical evaluation for the consolidation of environmental sustainability and green energy production
    corecore