26,511 research outputs found

    Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    Get PDF
    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes

    Probability of detection of internal voids in structural ceramics using microfocus radiography

    Get PDF
    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter

    A formal theory of cubical complexes Formal report, 1 Sep. 1968 - 30 Apr. 1969

    Get PDF
    Algorithm for computation of test failures in cyclic circuit

    Radiographic detectability limits for seeded voids in sintered silicon carbide and silicon nitride

    Get PDF
    Conventional and microfocus X-radiographic techniques were compared to determine relative detectability limits for voids in green and sintered SiC and Si3N4. The relative sensitivity of the techniques was evaluated by comparing their ability to detect voids that were artificially introduced by a seeding process. For projection microfocus radiography the sensitivity of void detection at a 90/95 probability of detection/confidence level is 1.5% of specimen thickness in sintered SiC and Si3N4. For conventional contact radiography the sensitivity is 2.5% of specimen thickness. It appears that microfocus projection radiography is preferable to conventional contact radiography in cases where increased sensitivity is required and where the additional complexity of the technique can be tolerated

    Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    Get PDF
    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics

    Initial results from the NASA Lewis Bumpy Torus experiment

    Get PDF
    Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field

    Characteristics of the NASA Lewis bumpy-torus plasma generated with positive applied potentials

    Get PDF
    Experimental observations were made during steady-state operation of a bumpy-torus plasma at input powers up to 150 kW in deuterium and helium gas and with positive potentials applied to the midplane electrodes. In this steady-state ion heating method a modified Penning discharge is operated such that the plasma is acted upon by a combination of strong electric and magnetic fields. Experimental investigation of a deuterium plasma revealed electron temperatures from 14 to 140 eV and ion kinetic temperatures from 160 to 1785 eV. At least two distinct modes of operation exist. Experimental data shows that the average ion residence time in the plasma is virtually independent of the magnetic field strength. Data was taken when all 12 anode rings were at high voltage, and in other symmetric configurations in which the toroidal plasma was generated by applying positive potentials to six anode rings, three anode rings, and a single anode ring

    Coarsening of Two Dimensional Foam on a Dome

    Get PDF
    In this paper we report on bubble growth rates and on the statistics of bubble topology for the coarsening of a dry foam contained in the narrow gap between two hemispheres. By contrast with coarsening in flat space, where six-sided bubbles neither grow nor shrink, we observe that six sided bubbles grow with time at a rate that depends on their size. This result agrees with the modification to von Neumann's law predicted by J.E. Avron and D. Levine. For bubbles with a different number of sides, except possibly seven, there is too much noise in the growth rate data to demonstrate a difference with coarsening in flat space. In terms of the statistics of bubble topology, we find fewer 3, 4, and 5 sided bubbles, and more 6 and greater sided bubbles, in comparison with the stationary distribution for coarsening in flat space. We also find good general agreement with the Aboav-Weaire law for the average number of sides of the neighbors of an n-sided bubble
    corecore