3,145 research outputs found

    Distribution of local entropy in the Hilbert space of bi-partite quantum systems: Origin of Jaynes' principle

    Get PDF
    For a closed bi-partite quantum system partitioned into system proper and environment we interprete the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into.Comment: Submitted to Physical Review

    Entanglement and the factorization-approximation

    Get PDF
    For a bi-partite quantum system defined in a finite dimensional Hilbert space we investigate in what sense entanglement change and interactions imply each other. For this purpose we introduce an entanglement operator, which is then shown to represent a non-conserved property for any bi-partite system and any type of interaction. This general relation does not exclude the existence of special initial product states, for which the entanglement remains small over some period of time, despite interactions. For this case we derive an approximation to the full Schroedinger equation, which allows the treatment of the composite systems in terms of product states. The induced error is estimated. In this factorization-approximation one subsystem appears as an effective potential for the other. A pertinent example is the Jaynes-Cummings model, which then reduces to the semi-classical rotating wave approximation.Comment: Accepted for publication in European Physical Journal

    Relaxation into equilibrium under pure Schr\"odinger dynamics

    Full text link
    We consider bipartite quantum systems that are described completely by a state vector Ψ(t)>|\Psi(t)> and the fully deterministic Schr\"odinger equation. Under weak constraints and without any artificially introduced decoherence or irreversibility, the smaller of the two subsystems shows thermodynamic behaviour like relaxation into an equilibrium, maximization of entropy and the emergence of the Boltzmann energy distribution. This generic behaviour results from entanglement.Comment: 5 pages, 9 figure

    Scaling behavior of interactions in a modular quantum system and the existence of local temperature

    Get PDF
    We consider a quantum system of fixed size consisting of a regular chain of nn-level subsystems, where nn is finite. Forming groups of NN subsystems each, we show that the strength of interaction between the groups scales with N1/2N^{- 1/2}. As a consequence, if the total system is in a thermal state with inverse temperature β\beta, a sufficient condition for subgroups of size NN to be approximately in a thermal state with the same temperature is NβδEˉ\sqrt{N} \gg \beta \bar{\delta E}, where δEˉ\bar{\delta E} is the width of the occupied level spectrum of the total system. These scaling properties indicate on what scale local temperatures may be meaningfully defined as intensive variables. This question is particularly relevant for non-equilibrium scenarios such as heat conduction etc.Comment: 7 pages, accepted for publication in Europhysics Letter

    Local effective dynamics of quantum systems: A generalized approach to work and heat

    Full text link
    By computing the local energy expectation values with respect to some local measurement basis we show that for any quantum system there are two fundamentally different contributions: changes in energy that do not alter the local von Neumann entropy and changes that do. We identify the former as work and the latter as heat. Since our derivation makes no assumptions on the system Hamiltonian or its state, the result is valid even for states arbitrarily far from equilibrium. Examples are discussed ranging from the classical limit to purely quantum mechanical scenarios, i.e. where the Hamiltonian and the density operator do not commute.Comment: 5 pages, 1 figure, published versio

    Elliptical orbits in the Bloch sphere

    Full text link
    As is well known, when an SU(2) operation acts on a two-level system, its Bloch vector rotates without change of magnitude. Considering a system composed of two two-level systems, it is proven that for a class of nonlocal interactions of the two subsystems including \sigma_i\otimes\sigma_j (with i,j \in {x,y,z}) and the Heisenberg interaction, the geometric description of the motion is particularly simple: each of the two Bloch vectors follows an elliptical orbit within the Bloch sphere. The utility of this result is demonstrated in two applications, the first of which bears on quantum control via quantum interfaces. By employing nonunitary control operations, we extend the idea of controllability to a set of points which are not necessarily connected by unitary transformations. The second application shows how the orbit of the coherence vector can be used to assess the entangling power of Heisenberg exchange interaction.Comment: 9 pages, 4 figures, few corrections, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) S1-S

    Effective environments: Preparation of stationary states with inverse temperature ranging from positive to negative values

    Full text link
    In this paper, we discuss how effective environments incorporating periodic measurements can be used to prepare a two-level system (TLS) in almost arbitrary thermal states: Concretely, we study a TLS coupled to a spin environment, the magnetization of which is measured periodically. In ensemble average these measurements cause a relaxation of the TLS into a thermal (diagonal) state. By adjusting the time between the measurements and the detuning of the environmental spins, the creation of very low temperatures as well as inversion becomes possible. Our analytical results derived for large environments are numerically shown to be valid even for quite small environments, down to only a few spins.Comment: 20 pages, 3 figures, accepted for publication in Phys. Rev.

    On the concept of pressure in quantum mechanics

    Full text link
    Heat and work are fundamental concepts for thermodynamical systems. When these are scaled down to the quantum level they require appropriate embeddings. Here we show that the dependence of the particle spectrum on system size giving rise to a formal definition of pressure can, indeed, be correlated with an external mechanical degree of freedom, modelled as a spatial coordinate of a quantum oscillator. Under specific conditions this correlation is reminiscent of that occurring in the classical manometer.Comment: 7 pages, 3 figure

    Abrupt and gradual changes of information through the Kane solid state computer

    Full text link
    The susceptibility of the transformed information to the filed and system parameters is investigated for the Kane solid state computer. It has been shown, that the field polarization and the initial state of the system play the central roles on the abrupt and gradual quench of the purity and the fidelity. If the field and the initial state are in different polarizations, then the purity and the fidelity decrease abruptly, while for the common polarization the decay is gradual and smooth. For some class of initial states one can send the information without any loss. Therefore, by controlling on the devices one can increase the time of safe communication, reduce the amount of exchange information between the state and its environment and minimize the purity decrease rate
    corecore