3 research outputs found

    Holonomy invariance, orbital resonances, and kilohertz QPOs

    Get PDF
    Quantized orbital structures are typical for many aspects of classical gravity (Newton's as well as Einstein's). The astronomical phenomenon of orbital resonances is a well-known example. Recently, Rothman, Ellis and Murugan (2001) discussed quantized orbital structures in the novel context of a holonomy invariance of parallel transport in Schwarzschild geometry. We present here yet another example of quantization of orbits, reflecting both orbital resonances and holonomy invariance. This strong-gravity effect may already have been directly observed as the puzzling kilohertz quasi-periodic oscillations (QPOs) in the X-ray emission from a few accreting galactic black holes and several neutron stars

    Mapping spacetimes with LISA: inspiral of a test-body in a `quasi-Kerr' field

    Get PDF
    The future LISA detector will constitute the prime instrument for high-precision gravitational wave observations.LISA is expected to provide information for the properties of spacetime in the vicinity of massive black holes which reside in galactic nuclei.Such black holes can capture stellar-mass compact objects, which afterwards slowly inspiral,radiating gravitational waves.The body's orbital motion and the associated waveform carry information about the spacetime metric of the massive black hole,and it is possible to extract this information and experimentally identify (or not!) a Kerr black hole.In this paper we lay the foundations for a practical `spacetime-mapping' framework. Our work is based on the assumption that the massive body is not necessarily a Kerr black hole, and that the vacuum exterior spacetime is stationary axisymmetric,described by a metric which deviates slightly from the Kerr metric. We first provide a simple recipe for building such a `quasi-Kerr' metric by adding to the Kerr metric the deviation in the value of the quadrupole moment. We then study geodesic motion in this metric,focusing on equatorial orbits. We proceed by computing `kludge' waveforms which we compare with their Kerr counterparts. We find that a modest deviation from the Kerr metric is sufficient for producing a significant mismatch between the waveforms, provided we fix the orbital parameters. This result suggests that an attempt to use Kerr waveform templates for studying EMRIs around a non-Kerr object might result in serious loss of signal-to-noise ratio and total number of detected events. The waveform comparisons also unveil a `confusion' problem, that is the possibility of matching a true non-Kerr waveform with a Kerr template of different orbital parameters.Comment: 19 pages, 6 figure
    corecore